Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

What will it take to observe processes in 'real time'?

Even for simple systems, the interpretations of new attosecond measurements are complicated and provide only a glimpse of their potential. Nonetheless, the lasting impact will be the revelation of how short-time dynamics can determine the electronic properties of more complex systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Streak field measurements of surface photoelectron ejection.
Figure 2: Charge migration in molecules.
Figure 3: Transient absorption measurements on He, taking advantage of the polarization of the medium.

References

  1. Krausz, F. & Ivanov, M. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  2. Sansone, G., Pfeifer, T., Simeonidis, K. & Kuleff, A. I. ChemPhysChem 13, 661–680 (2012).

    Article  Google Scholar 

  3. De Morisson Faria, C. F. & Liu, X. J. Mod. Opt. 58, 1076–1131 (2011).

    Article  ADS  Google Scholar 

  4. Haessler, S., Caillat, J. & Salières, P. J. Phys. B 44, 203001 (2011).

    Article  ADS  Google Scholar 

  5. Schmidt-Böcking, H. et al. Nucl. Instrum. Methods Phys. Res. B 233, 3–11 (2005).

    Article  ADS  Google Scholar 

  6. Mukamel, S., Healion, D., Zhang, Y. & Biggs, J. D. Annu. Rev. Phys. Chem. 64, 101–127 (2013).

    Article  ADS  Google Scholar 

  7. Loh, Z.-H. & Leone, S. R. J. Phys. Chem. Lett. 4, 292–302 (2013).

    Article  Google Scholar 

  8. Dixit, G., Slowik, J. M. & Santra, R. Phys. Rev. Lett. 110, 137403 (2013).

    Article  ADS  Google Scholar 

  9. Muga, J. G., Mayato, R. S. & Egusquiza, Í. L. Time in Quantum Mechanics, Springer Lecture Notes in Physics Vol. 734, 2nd edn (Springer, 2008).

    Book  Google Scholar 

  10. Schultze, M. et al. Science 328, 1658–1662 (2010).

    Article  ADS  Google Scholar 

  11. Pazourek, R., Feist, J., Nagele, S. & Burgdörfer, J. Phys. Rev. Lett. 108, 163001 (2012).

    Article  ADS  Google Scholar 

  12. Zhang, C.-H. & Thumm, U. Phys. Rev. A 82, 043405 (2010).

    Article  ADS  Google Scholar 

  13. Cavalieri, A. L. et al. Nature 449, 1029–1032 (2007).

    Article  ADS  Google Scholar 

  14. Lemell, C., Solleder, B., Tökési, K & Burgdörfer, J. Phys. Rev. A 79, 062901 (2009).

    Article  ADS  Google Scholar 

  15. Goulielmakis, E. et al. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  16. Pabst, S. et al. Phys. Rev. A 86, 063411 (2012).

    Article  ADS  Google Scholar 

  17. Dutoi, A. D., Wormit, M. & Cederbaum, L. S. J. Chem. Phys. 134, 024303 (2011).

    Article  ADS  Google Scholar 

  18. Pabst, S., Greenman, L., Ho, P. J., Mazziotti, D. A. & Santra, R. Phys. Rev. Lett. 106, 053003 (2011).

    Article  ADS  Google Scholar 

  19. Kraus, P. M. et al. Phys. Rev. A 85, 043409 (2012).

    Article  ADS  Google Scholar 

  20. Chini, M. et al. Sci. Rep. 3, 1105 (2013).

    Article  Google Scholar 

  21. Ott, C. et al. Science 340, 716–720 (2013).

    Article  ADS  Google Scholar 

  22. Schultze, M. et al. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  23. Pfeiffer, A. N., Cirelli, C, Smolarski, M. & Keller, U. Chem. Phys. 414, 84–91 (2013).

    Article  Google Scholar 

  24. Smirnova, O. et al. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  25. Blaga, C. I. et al. Nature 483, 194–197 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This Commentary evolved from the presentations and discussions at the workshop “Unraveling the Interpretations of Attosecond Measurements” held in March 2013 in Washington, DC, sponsored by the Council on Chemical and Biochemical Sciences of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors are grateful to the members of the Council for their encouragement and assistance in developing this workshop. In addition, the authors acknowledge the agencies that provided funding for individual research programs in attosecond and related science, without which this workshop and Commentary would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Leone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leone, S., McCurdy, C., Burgdörfer, J. et al. What will it take to observe processes in 'real time'?. Nature Photon 8, 162–166 (2014). https://doi.org/10.1038/nphoton.2014.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.48

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing