Letter

High photon flux table-top coherent extreme-ultraviolet source

  • Nature Photonics volume 8, pages 779783 (2014)
  • doi:10.1038/nphoton.2014.214
  • Download Citation
Received:
Accepted:
Published:

Abstract

High harmonic generation (HHG) enables extreme-ultraviolet radiation with table-top set-ups1. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications1. Some of these require a high photon flux and megahertz repetition rates, for example, to avoid space charge effects in photoelectron spectroscopy2,3,4. To date, this has only been achieved with enhancement cavities5. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV–40 eV) of strong harmonics, each containing more than 1 × 1012 photons s–1, which constitutes an increase by more than one order of magnitude in that wavelength range6,7,8. The strongest harmonic (H25, 30 eV) has an average power of 143 μW (3 × 1013 photons s–1). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy9, coherent diffractive imaging10 or (multidimensional) surface science2.

  • Subscribe to Nature Photonics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , , , & The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

  2. 2.

    et al. in Dynamics of Solid State Surface Interfaces Vol. 1 Current Developments (eds Bovensiepen, U., Petek, H. & Wolf, M.) 499–535 (Wiley-VCH, 2010).

  3. 3.

    et al. Femtosecond laser oscillators for high-field science. Nature Photon. 2, 599–604 (2008).

  4. 4.

    Femtosecond to attosecond optics. IEEE Photon. J. 2, 225–228 (2010).

  5. 5.

    et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

  6. 6.

    et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nature Photon. 7, 608–612 (2013).

  7. 7.

    et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

  8. 8.

    et al. Comparison and real-time monitoring of high-order harmonic generation in different sources. Phys. Rev. A 79, 033404 (2009).

  9. 9.

    , & Attosecond technology and science. IEEE J. Sel. Top. Quantum Electron. 18, 507–519 (2012).

  10. 10.

    et al. Lensless diffractive imaging using table-top coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99, 098103 (2007).

  11. 11.

    et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

  12. 12.

    et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31 (1988).

  13. 13.

    , & Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

  14. 14.

    , & Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

  15. 15.

    , & Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

  16. 16.

    , , & Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).

  17. 17.

    et al. Single-pass high-harmonic generation at 20.8 MHz repetition rate. Opt. Lett. 36, 3428–3430 (2011).

  18. 18.

    Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

  19. 19.

    , , , & Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

  20. 20.

    et al. Pressure-induced phase matching in high-order harmonic generation. Phys. Rev. A 83, 063405 (2011).

  21. 21.

    et al. Phase-matching techniques for coherent soft X-ray generation. IEEE J. Quantum Electron. 42, 14–26 (2006).

  22. 22.

    et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

  23. 23.

    et al. Nonlinear compression to sub-30 fs, 0.5 mJ pulses at 135 W of average power. Opt. Lett. 38, 3866–3869 (2013).

  24. 24.

    et al. Soft X-ray laser spectroscopy on trapped highly charged ions at FLASH. Phys. Rev. Lett. 98, 183001 (2007).

  25. 25.

    et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

  26. 26.

    et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses. IEEE J. Sel. Top. Quantum Electron. 20, 1–10 (2014).

  27. 27.

    et al. Towards isolated attosecond pulses at megahertz repetition rates. Nature Photon. 7, 555–559 (2013).

  28. 28.

    et al. 530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. Opt. Lett. 38, 2283–2285 (2013).

  29. 29.

    et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232 (2011).

  30. 30.

    Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge Univ. Press, 1999).

  31. 31.

    Handbook of Optical Constants of Solids, Vol. I (ed. Palik, E. D.) 749–763 (Academic Press, 1997);

  32. 32.

    et al. Generation of high-photon flux-coherent soft X-ray radiation with few-cycle pulses. Opt. Lett. 38, 5051–5054 (2013).

Download references

Acknowledgements

This work was partly supported by the German Federal Ministry of Education and Research (BMBF) and the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC (grant agreement no. 240460). A.K. acknowledges financial support from the Helmholtz-Institute Jena.

Author information

Affiliations

  1. Friedrich-Schiller-Universität Jena, Abbe Center of Photonics, Institute of Applied Physics, Albert-Einstein-Straße 15, 07745 Jena, Germany

    • Steffen Hädrich
    • , Arno Klenke
    • , Jan Rothhardt
    • , Manuel Krebs
    • , Armin Hoffmann
    • , Jens Limpert
    •  & Andreas Tünnermann
  2. Helmholtz-Institute Jena, Fröbelstieg 3, 07743 Jena, Germany

    • Steffen Hädrich
    • , Arno Klenke
    • , Jan Rothhardt
    • , Jens Limpert
    •  & Andreas Tünnermann
  3. Ludwig-Maximilian-Universität München, Am Coulombwall 1, 85748 Garching, Germany

    • Oleg Pronin
    •  & Vladimir Pervak
  4. Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745 Jena, Germany

    • Jens Limpert
    •  & Andreas Tünnermann

Authors

  1. Search for Steffen Hädrich in:

  2. Search for Arno Klenke in:

  3. Search for Jan Rothhardt in:

  4. Search for Manuel Krebs in:

  5. Search for Armin Hoffmann in:

  6. Search for Oleg Pronin in:

  7. Search for Vladimir Pervak in:

  8. Search for Jens Limpert in:

  9. Search for Andreas Tünnermann in:

Contributions

J.L., S.H., J.R. and M.K. conceived the experiment. The experiments were planned and performed by S.H., J.R., A.K., A.H. and M.K. Data were analysed by S.H. with support from J.R. and M.K. All authors discussed and contributed to interpretation of the results. J.L. and A.T. supervised the project and acquired funding. The idea for and design of the anti-reflection-coated SiO2 substrates originate from O.P. and V.P., who also fabricated the samples used in this experiment. All authors contributed to writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Steffen Hädrich.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information