Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Broadband high-resolution X-ray frequency combs

Abstract

Optical frequency combs have had a remarkable impact on precision spectroscopy1,2,3. Enabling this technology in the X-ray domain is expected to result in wide-ranging applications, such as stringent tests of astrophysical models and quantum electrodynamics4, a more sensitive search for the variability of fundamental constants5, and precision studies of nuclear structure6. Ultraprecise X-ray atomic clocks may also be envisaged7. In this work, an X-ray pulse-shaping method is proposed to generate a comb in the absorption spectrum of an ultrashort high-frequency pulse. The method employs an optical-frequency-comb laser, manipulating the system's dipole response to imprint a comb on an excited transition with a high photon energy. The described scheme provides higher comb frequencies and requires lower optical-comb peak intensities than currently explored methods8,9,10, preserves the overall width of the optical comb, and may be implemented using currently available X-ray technology11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-level scheme used to describe the interaction between the model system and the driving fields.
Figure 2: Time evolution and X-ray frequency comb absorption spectrum driven by a resonant optical frequency comb.
Figure 3: X-ray comb absorption spectrum driven by a detuned optical frequency comb.

Similar content being viewed by others

References

  1. Udem, Th., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  2. Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  3. Diddams, S. A. The evolving optical frequency comb [Invited]. J. Opt. Soc. Am. B 27, B51–B62 (2010).

    Article  Google Scholar 

  4. Bernitt, S. et al. An unexpectedly low oscillator strength as the origin of the Fe XVII emission problem. Nature 492, 225–228 (2012).

    Article  ADS  Google Scholar 

  5. Berengut, J. C., Dzuba, V. A., Flambaum, V. V. & Ong, A. Electron–hole transitions in multiply charged ions for precision laser spectroscopy and searching for variations in α. Phys. Rev. Lett. 106, 210802 (2011).

    Article  ADS  Google Scholar 

  6. Bürvenich, T. J., Evers, J. & Keitel, C. H. Nuclear quantum optics with X-ray laser pulses. Phys. Rev. Lett. 96, 142501 (2006).

    Article  ADS  Google Scholar 

  7. Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).

    Article  ADS  Google Scholar 

  8. Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).

    Article  ADS  Google Scholar 

  9. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article  ADS  Google Scholar 

  10. Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    Article  ADS  Google Scholar 

  11. Rebernik Ribic, P. & Margaritondo, G. Status and prospects of X-ray free-electron lasers (X-FELs): a simple presentation. J. Phys. D 45, 213001 (2012).

    Article  ADS  Google Scholar 

  12. Kourogi, M., Nakagawa, K. & Ohtsu, M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29, 2693–2701 (1993).

    Article  ADS  Google Scholar 

  13. Ye, J., Ma, L.-S., Daly, T. & Hall, J. L. Highly selective terahertz optical frequency comb generator. Opt. Lett. 22, 301–303 (1997).

    Article  ADS  Google Scholar 

  14. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  15. Udem, Th., Reichert, J., Holzwarth, R. & Hänsch, T. W. Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999).

    Article  ADS  Google Scholar 

  16. Diddams, S. A. et al. An optical clock based on a single trapped 199Hg+ ion. Science 293, 825–828 (2001).

    Article  ADS  Google Scholar 

  17. Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).

    Article  ADS  Google Scholar 

  18. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  19. Stowe, M. C., Cruz, F. C., Marian, A. & Ye, J. High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. Phys. Rev. Lett. 96, 153001 (2006).

    Article  ADS  Google Scholar 

  20. Kohler, M. C., Pfeifer, T., Hatsagortsyan, K. Z. & Keitel, C. H. in Advances in Atomic, Molecular, and Optical Physics Vol. 61 (eds Berman, P., Arimondo, E. & Lin, C.) Ch. 4, 159–208 (Academic Press, 2012).

    Book  Google Scholar 

  21. Röhlsberger, R., Wille, H.-C., Schlage, K. & Sahoo, B. Electromagnetically induced transparency with resonant nuclei in a cavity. Nature 482, 199–203 (2012).

    Article  ADS  Google Scholar 

  22. Cavaletto, S. M., Harman, Z., Buth, C. & Keitel, C. H. X-ray frequency combs from optically controlled resonance fluorescence. Phys. Rev. A 88, 063402 (2013).

    Article  ADS  Google Scholar 

  23. Liu, Z. et al. Generation of high-frequency combs locked to atomic resonances by quantum phase modulation. Preprint at http://arxiv.org/abs/1309.6335 (2013).

  24. Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    Article  ADS  Google Scholar 

  25. Pollard, W. T. & Mathies, R. A. Analysis of femtosecond dynamic absorption spectra of nonstationary states. Annu. Rev. Phys. Chem. 43, 497–523 (1992).

    Article  ADS  Google Scholar 

  26. Marian, A., Stowe, M. C., Lawall, J. R., Felinto, D. & Ye, J. United time–frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).

    Article  ADS  Google Scholar 

  27. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).

    Book  Google Scholar 

  28. Yerokhin, V. A. & Pachucki, K. Theoretical energies of low-lying states of light helium-like ions. Phys. Rev. A 81, 022507 (2010).

    Article  ADS  Google Scholar 

  29. Derevianko, A. & Johnson, W. R. Two-photon decay of 21S0 and 23S1 states of heliumlike ions. Phys. Rev. A 56, 1288–1294 (1997).

    Article  ADS  Google Scholar 

  30. Jönsson, P., He, X., Froese Fischer, C. & Grant, I. P. The grasp2K relativistic atomic structure package. Comput. Phys. Commun. 177, 597–622 (2007).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

T.P. acknowledges support from the Max Planck Research Group programme and the DFG (grant no. PF790/1-1).

Author information

Authors and Affiliations

Authors

Contributions

S.M.C. developed the mathematical model, performed the analytical calculations and wrote the manuscript. All authors contributed to the development of ideas, discussion of the technical aspects and results, and preparation of the manuscript.

Corresponding author

Correspondence to Stefano M. Cavaletto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaletto, S., Harman, Z., Ott, C. et al. Broadband high-resolution X-ray frequency combs. Nature Photon 8, 520–523 (2014). https://doi.org/10.1038/nphoton.2014.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing