Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Far-field imaging of non-fluorescent species with subdiffraction resolution

Abstract

Super-resolution optical microscopy is providing a new means by which to view as yet unseen details on a nanoscopic scale. Current far-field super-resolution techniques rely on fluorescence as the readout1,2,3,4,5. Here, we demonstrate a scheme for breaking the diffraction limit in far-field imaging of non-fluorescent species by using spatially controlled saturation of electronic absorption. Our method is based on a pump–probe process where a modulated pump field perturbs the charge carrier density in a sample, thus modulating the transmission of a probe field. A doughnut-shaped laser beam is then added to transiently saturate the electronic transition in the periphery of the focal volume, so the induced modulation in the sequential probe pulse only occurs at the focal centre. By raster-scanning the three collinearly aligned beams, high-speed subdiffraction-limited imaging of graphite nanoplatelets is performed. This technique has the potential to enable super-resolution imaging of nanomaterials and non-fluorescent chromophores, which may remain out of reach to fluorescence-based methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of saturated transient absorption microscopy.
Figure 2: Diagram of the saturated transient absorption microscope.
Figure 3: Suppression of the pump–probe signal by saturation of the electronic transition in graphene and graphite nanoplatelets.
Figure 4: Subdiffraction-limited imaging of graphite nanoplatelets.

Similar content being viewed by others

References

  1. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission–depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  2. Bretschneider, S., Eggeling, C. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103 (2007).

    Article  ADS  Google Scholar 

  3. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  ADS  Google Scholar 

  4. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. methods 3, 793–796 (2006).

    Article  Google Scholar 

  5. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  6. Fu, D., Ye, T., Matthews, T. E., Yurtsever, G. & Warren, W. S. Two-color, two-photon, and excited-state absorption microscopy. J. Biomed. Opt. 12, 054004–054008 (2007).

    Article  ADS  Google Scholar 

  7. Matthews, T. E., Piletic, I. R., Selim, M. A., Simpson, M. J. & Warren, W. S. Pump–probe imaging differentiates melanoma from melanocytic nevi. Sci. Transl. Med. 3, 71ra15 (2011).

    Article  Google Scholar 

  8. Min, W. et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461, 1105–1109 (2009).

    Article  ADS  Google Scholar 

  9. Huang, L. et al. Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Nano Lett. 10, 1308–1313 (2010).

    Article  ADS  Google Scholar 

  10. Jung, Y. et al. Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope. Phys. Rev. Lett. 105, 217401 (2010).

    Article  ADS  Google Scholar 

  11. Chong, S., Min, W. & Xie, X. S. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010).

    Article  Google Scholar 

  12. Bouwhuis, G. & Spruit, J. H. M. Optical storage read-out of nonlinear disks. Appl. Opt. 29, 3766–3768 (1990).

    Article  ADS  Google Scholar 

  13. Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 21, 1347–1355 (2003).

    Article  Google Scholar 

  14. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  Google Scholar 

  15. Bao, Q. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Article  Google Scholar 

  16. Vasko, F. T. Saturation of interband absorption in graphene. Phys. Rev. B 82, 245422 (2010).

    Article  ADS  Google Scholar 

  17. Zitter, R. N. Saturated optical absorption through band filling in semiconductors. Appl. Phys. Lett. 14, 73–74 (1969).

    Article  ADS  Google Scholar 

  18. Breusing, M., Ropers, C. & Elsaesser, T. Ultrafast carrier dynamics in graphite. Phys. Rev. Lett. 102, 086809 (2009).

    Article  ADS  Google Scholar 

  19. Wang, H. et al. Ultrafast relaxation dynamics of hot optical phonons in graphene. Appl. Phys. Lett. 96, 081917 (2010).

    Article  ADS  Google Scholar 

  20. Rozhin, A. G. et al. Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol. Chem. Phys. Lett. 405, 288–293 (2005).

    Article  ADS  Google Scholar 

  21. Avouris, P., Freitag, M. & Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photon. 2, 341–350 (2008).

    Article  ADS  Google Scholar 

  22. Baek, I. H. et al. Single-walled carbon nanotube saturable absorber assisted high-power mode-locking of a Ti:sapphire laser. Opt. Express 19, 7833–7838 (2011).

    Article  ADS  Google Scholar 

  23. Singh, C. P., Bindra, K. S., Bhalerao, G. M. & Oak, S. M. Investigation of optical limiting in iron oxide nanoparticles. Opt. Express 16, 8440–8450 (2008).

    Article  ADS  Google Scholar 

  24. Irimpan, L., Nampoori, V. P. N. & Radhakrishnan, P. Spectral and nonlinear optical characteristics of ZnO nanocomposites. Sci. Adv. Mater. 2, 117–137 (2010).

    Article  Google Scholar 

  25. Jain, T. K., Reddy, M. K., Morales, M. A., Leslie-Pelecky, D. L. & Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharmacol. 5, 316–327 (2008).

    Article  Google Scholar 

  26. Zhou, J., Xu, N. S. & Wang, Z. L. Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18, 2432–2435 (2006).

    Article  Google Scholar 

  27. Terada, Y., Yoshida, S., Takeuchi, O. & Shigekawa, H. Real-space imaging of transient carrier dynamics by nanoscale pump-probe microscopy. Nature Photon. 4, 869–874 (2010).

    Article  ADS  Google Scholar 

  28. Hein, B., Willig, K. I. & Hell, S. W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl Acad. Sci. USA 105, 14271–14276 (2008).

    Article  ADS  Google Scholar 

  29. Slipchenko, M. N., Oglesbee, R. A., Zhang, D., Wu, W. & Cheng, J-X. Heterodyne detected nonlinear optical imaging in a lock-in free manner. J. Biophoton. 5, 801–807 (2012).

    Article  Google Scholar 

  30. Cao, H. et al. Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization. Appl. Phys. Lett. 96, 122106 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health (grant R21EB015901 to J-X.C.), the National Science Foundation (grant CHE-0847097 to E.O.P.) and the Defense Advanced Research Project Agency (grant no. N66001-08-1-2037, Program Managers T. Kenny and T. Akinwande) to X.X. The authors thank Yong Chen and Jack Chung for providing the graphene sample, and Delong Zhang for technical support.

Author information

Authors and Affiliations

Authors

Contributions

P.W., M.N.S. and J.-X.C. designed the experiment. P.W. and M.N.S. performed the experiments. P.W. carried out the data analysis. J.M. synthesized the graphite nanoplatelets. E.O.P. provided the spatial light modulator. J.-X.C., C.Y., E.O.P. and X.X. provided overall guidance to the project. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Ji-Xin Cheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3098 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Slipchenko, M., Mitchell, J. et al. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nature Photon 7, 449–453 (2013). https://doi.org/10.1038/nphoton.2013.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.97

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing