Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Frequency combs

The purest microwave oscillations

A new femtosecond frequency comb scheme is capable of generating microwave signals at a noise level below the shot noise of light.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Power spectral density of random phase for a 10-GHz femtosecond frequency comb detected with a high-power photodiode and expressed in terms of different units.

References

  1. Quinlan, F. et al. Nature Photon. 7, 290–293 10.1038/nphoton.2013.33(2013).

    Article  ADS  Google Scholar 

  2. Kim, J. & Kärtner, F. X. Opt. Lett. 35, 2022–2024 (2010).

    Article  ADS  Google Scholar 

  3. Fortier, T. M. et al. Nature Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  4. Haboucha, A. et al. Opt. Lett. 36, 3654–3656 (2011).

    Article  ADS  Google Scholar 

  5. Jung, K. & Kim, J. Opt. Lett. 37, 2958–2960 (2012).

    Article  ADS  Google Scholar 

  6. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  7. Eliyahu, D., Seidel, D. & Maleki, L. IEEE Trans. Microw. Theory 56, 449–456 (2008).

    Article  Google Scholar 

  8. Benedick, A. J., Fujimoto, J. G. & Kärtner, F. X. Nature Photon. 6, 97–100 (2012).

    Article  ADS  Google Scholar 

  9. Fortier, T. M. et al. Nature Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  10. Jiang, Y. Y. et al. Nature Photon. 5, 158–161 (2011).

    Article  ADS  Google Scholar 

  11. Kessler, T. et al. Nature Photon. 6, 687–692 (2012).

    Article  ADS  Google Scholar 

  12. Ivanov, E. N. & Tobar, M. E. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 263–269 (2009).

    Article  Google Scholar 

  13. Hartnett, J. G., Nand, N. R. & Lu, C. Appl. Phys. Lett. 100, 183501 (2012).

    Article  ADS  Google Scholar 

  14. Giordano, V. et al. Rev. Sci. Instr. 83, 085113 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Rubiola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubiola, E., Santarelli, G. The purest microwave oscillations. Nature Photon 7, 269–271 (2013). https://doi.org/10.1038/nphoton.2013.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing