Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tip-enhanced infrared nanospectroscopy via molecular expansion force detection

Abstract

Mid-infrared absorption spectroscopy in the molecular fingerprint region is widely used for chemical identification and quantitative analysis employing infrared absorption spectra databases. The ability to perform mid-infrared spectroscopy with nanometre spatial resolution is highly desirable for applications in materials and life sciences. At present, scattering near-field scanning optical microscopy1,2,3,4,5,6 is considered to be the most sensitive technique for nanoscale mid-infrared spectroscopy under ambient conditions. Here, we demonstrate that nanoscale mid-infrared spectra can be obtained with comparable or higher sensitivity by detecting mechanical forces exerted by molecules on the atomic force microscope tip on light excitation. The mechanical approach to mid-infrared nanospectroscopy results in a simple optical set-up that, unlike scattering near-field scanning optical microscopy, requires no cryogenically cooled mid-infrared detectors, is easy to align, and is not affected by sample scattering.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Description of experiment.
Figure 2: Photoexpansion spectra of self-assembled monolayers on gold.
Figure 3: Demonstration of spatial resolution.
Figure 4: Sample heating and expansion.

Similar content being viewed by others

References

  1. Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  2. Xu, X. G., Rang, M., Craig, I. M. & Raschke, M. B. Pushing the sample-size limit of infrared vibrational nanospectroscopy: from monolayer toward single molecule sensitivity. J. Phys. Chem. Lett. 3, 1836–1841 (2012).

    Article  Google Scholar 

  3. Huth, F., Schnell, M., Wittborn, J., Ocelic, N. & Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nature Mater. 10, 352–356 (2011).

    Article  ADS  Google Scholar 

  4. Knoll B. & Keilmann F. Near-field probing of vibrational absorption for chemical microscopy. Nature 399, 134–137 (1999).

    Article  ADS  Google Scholar 

  5. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  ADS  Google Scholar 

  6. Brehm, M., Taubner, T., Hillenbrand, R. & Keilmann, F. Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution. Nano Lett. 6, 1307–1310 (2006).

    Article  ADS  Google Scholar 

  7. Puttkamer, K. V., Dubal, H.-R. & Quack, M. Time-dependent processes in polyatomic molecules during and after intense infrared irradiation. J. Chem. Soc. Faraday Discuss. 75, 197–210 (1983).

    Article  Google Scholar 

  8. Dazzi, A., Prazeres, R., Glotin, F. & Ortega, J. M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 30, 2388–2390 (2005).

    Article  ADS  Google Scholar 

  9. Dazzi, A., Glotin, F. & Carminati, R. Theory of infrared nanospectroscopy by photothermal induced resonance. J. Appl. Phys. 107, 124519 (2010).

    Article  ADS  Google Scholar 

  10. Dazzi, A. et al. AFM–IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 66, 1365–1384 (2012).

    Article  ADS  Google Scholar 

  11. Policar, C. et al. Subcellular IR imaging of a metal–carbonyl moiety using photothermally induced resonance. Angew. Chem. Int. Ed. 50, 860–864 (2011).

    Article  Google Scholar 

  12. Lahiri, B., Holland, G., Aksyuk, V. & Centrone, A. Nanoscale imaging of plasmonic hot spots and dark modes with the photothermal-induced resonance technique. Nano Lett. 13, 3218–3224 (2013).

    Article  ADS  Google Scholar 

  13. Felts, J. R. et al. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Rev. Sci. Instrum. 84, 023709 (2013).

    Article  ADS  Google Scholar 

  14. Lahiri, B., Holland, G. & Centrone, A. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique. Small 9, 439–445 (2013).

    Article  Google Scholar 

  15. Troccoli, M. et al. High-performance quantum cascade lasers grown by metal–organic vapor phase epitaxy and their applications to trace gas sensing. J. Lightwave Technol. 26, 3534–3555 (2008).

    Article  ADS  Google Scholar 

  16. Lu, F. & Belkin, M. A. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers. Opt. Express 19, 19942–19947 (2011).

    Article  ADS  Google Scholar 

  17. Hida, H. et al. Fabrication of a quartz tuning-fork probe with a sharp tip for AFM systems. Sens. Actuat. A 148, 311–318 (2008).

    Article  Google Scholar 

  18. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  Google Scholar 

  19. Hegner, M., Wagner, P. & Semenza, G. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf. Sci. 291, 39–46 (1993).

    Article  ADS  Google Scholar 

  20. Harder, P., Grunze, M., Dahint, R., Whitlesides, G. M. & Laibinis, P. E. Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J. Phys. Chem. B 102, 426–436 (1998).

    Article  Google Scholar 

  21. Merklin, G. T., He, L.-T. & Griffiths, P. R. Surface-enhanced infrared absorption spectrometry of p-nitrothiophenol and its disulfide. Appl. Spectrosc. 53, 1448–1453 (1999).

    Article  ADS  Google Scholar 

  22. Steidtner, J. & Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 100, 236101 (2008).

    Article  ADS  Google Scholar 

  23. Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

    Article  Google Scholar 

  24. Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).

  25. Derjaguin, B. V., Muller, V. M. & Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975).

    Article  ADS  Google Scholar 

  26. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 2003).

    Google Scholar 

  27. Luan, B. & Robbins, M. O. The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005).

    Article  ADS  Google Scholar 

  28. DelRio, F. W., Jaye, C., Fischer, D. A. & Cook, R. F. Elastic and adhesive properties of alkanethiol self-assembled monolayers on gold. App. Phys. Lett. 94, 131909 (2009).

    Article  ADS  Google Scholar 

  29. Kohlgraf-Owens, D. C., Sukhov, S. & Dogariu, A. Mapping the mechanical action of light. Phys. Rev. A 84, 011807(R) (2011).

    Article  ADS  Google Scholar 

  30. Brandstetter, M. & Lendl, B. Tunable mid-infrared lasers in physical chemosensors towards the detection of physiologically relevant parameters in biofluids. Sens. Actuat. B 170, 189–195 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Robert A. Welch Foundation (grant no. F-1705) and the US Department of Energy STTR program. Sample fabrication was carried out in the Microelectronics Research Center at the University of Texas at Austin, which is a member of the National Nanotechnology Infrastructure Network (NNIN). The authors thank C. Prater, V. Yakovlev and F. Lagugné-Labarthet for discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.A.B. conceived and designed the experiments. F.L. built the experimental set-up. F.L. and M.J. performed the experiments. All authors analysed the data and wrote the paper.

Corresponding author

Correspondence to Mikhail A. Belkin.

Ethics declarations

Competing interests

M.A.B. and F.L. are co-authors of US patent application no. 13/307,464, ‘High frequency deflection measurement of IR absorption’. M.J. declares no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, F., Jin, M. & Belkin, M. Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nature Photon 8, 307–312 (2014). https://doi.org/10.1038/nphoton.2013.373

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing