Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures

An Erratum to this article was published on 19 November 2013

This article has been updated

Abstract

Sharp metallic nanotapers irradiated with few-cycle laser pulses are emerging as a source of highly confined coherent electron wave packets with attosecond duration and strong directivity1,2,3,4,5,6. The possibility to steer, control or switch such electron wave packets with light7 is expected to pave the way towards direct visualization of nanoplasmonic field dynamics8,9,10 and real-time probing of electron motion11,12 in solid-state nanostructures13,14. Such pulses can be generated by strong-field-induced tunnelling and acceleration of electrons in the near-field of sharp gold tapers within one half-cycle of the driving laser field1,2,5. Here, we show the effect of the carrier-envelope phase of the laser field on the generation and motion of strong-field-emitted electrons from such tips. We observe clear variations in the width of plateau-like photoelectron spectra characteristic of the subcycle regime. This is a step towards controlling the coherent electron motion in and around metallic nanostructures over ultrashort lengths and timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron generation from sharp metal tips with few-cycle CEP-stabilized pulses.
Figure 2: Transition from multiphoton to strong-field photoemission from sharp gold tips.
Figure 3: Experimental observation of CEP effects in strong-field electron emission from sharp metal tips.
Figure 4: Numerical simulation of the CEP effect on strong-field photoemission.

Similar content being viewed by others

Change history

  • 19 November 2013

    In the version of this Letter originally published online, one beam was missing in the interferometer section depicted in the schematic shown in Fig. 1a. This error has now been corrected in both the HTML and PDF versions of this Letter.

References

  1. Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    Article  ADS  Google Scholar 

  2. Hommelhoff, P., Kealhofer, C. & Kasevich, M. A. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402 (2006).

    Article  ADS  Google Scholar 

  3. Hommelhoff, P., Sortais, Y., Aghajani-Talesh, A. & Kasevich, M. A. Field emission tip as a nanometer source of free electron femtosecond pulses. Phys. Rev. Lett. 96, 077401 (2006).

    Article  ADS  Google Scholar 

  4. Kruger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  5. Park, D. J. et al. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip. Phys. Rev. Lett. 109, 244803 (2012).

    Article  ADS  Google Scholar 

  6. Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907 (2007).

    Article  ADS  Google Scholar 

  7. Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).

    Article  ADS  Google Scholar 

  8. Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    Article  ADS  Google Scholar 

  9. Kubo, A. et al. Femtosecond imaging of surface plasmon dynamics in a nanostructured silver film. Nano Lett. 5, 1123–1127 (2005).

    Article  ADS  Google Scholar 

  10. Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nature Photon. 1, 539–544 (2007).

    Article  ADS  Google Scholar 

  11. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  12. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  13. Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).

    Article  ADS  Google Scholar 

  14. Zherebtsov, S. et al. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nature Phys. 7, 656–662 (2011).

    Article  ADS  Google Scholar 

  15. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  16. Haworth, C. A. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nature Phys. 3, 52–57 (2007).

    Article  ADS  Google Scholar 

  17. Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  18. Kulander, K. C., Schafer, K. J. & Krause, J. L. Theoretical model for intense field high-order harmonic generation in rare gases. Laser Phys. 3, 359–364 (1993).

    Google Scholar 

  19. Bormann, R., Gulde, M., Weismann, A., Yalunin, S. V. & Ropers, C. Tip-enhanced strong-field photoemission. Phys. Rev. Lett. 105, 147601 (2010).

    Article  ADS  Google Scholar 

  20. Schenk, M., Krueger, M. & Hommelhoff, P. Strong-field above-threshold photoemission from sharp metal tips. Phys. Rev. Lett. 105, 257601 (2010).

    Article  ADS  Google Scholar 

  21. Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003); erratum Nature 422, 189 (2003).

    Article  ADS  Google Scholar 

  22. Nisoli, M. et al. Effects of carrier-envelope phase differences of few-optical-cycle light pulses in single-shot high-order-harmonic spectra. Phys. Rev. Lett. 91, 213905 (2003).

    Article  ADS  Google Scholar 

  23. Eckle, P. et al. Attosecond angular streaking. Nature Phys. 4, 565–570 (2008).

    Article  Google Scholar 

  24. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  25. Schmidt, S. et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6, 6040–6048 (2012).

    Article  Google Scholar 

  26. Manzoni, C., Cerullo, G. & De Silvestri, S. Ultrabroadband self-phase-stabilized pulses by difference-frequencygeneration. Opt. Lett. 29, 2668–2670 (2004).

    Article  ADS  Google Scholar 

  27. Piglosiewicz, B. et al. Ultrasmall bullets of light-focusing few-cycle light pulses to the diffraction limit. Opt. Express 19, 14451–14463 (2011).

    Article  ADS  Google Scholar 

  28. Stockman, M. I. & Hewageegana, P. Absolute phase effect in ultrafast optical responses of metal nanostructures. Appl. Phys. A 89, 247–250 (2007).

    Article  ADS  Google Scholar 

  29. Paulus, G. G. et al. Measurement of the phase of few-cycle laser pulses. Phys. Rev. Lett. 91, 253004 (2003).

    Article  ADS  Google Scholar 

  30. Passlack, S. et al. Space charge effects in photoemission with a low repetition, high intensity femtosecond laser source. J. Appl. Phys. 100, 024912 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (SPP1391), the European Union (‘CRONOS’) and the Korea Foundation for International Cooperation of Science and Technology (Global Research Laboratory project, K20815000003) is acknowledged. D.J.P. thanks Hanse-Wissenschaftskolleg for a personal fellowship. The research leading to these results has received funding from LASERLAB-EUROPE (grant agreement no. 284464, EC's Seventh Framework Programme).

Author information

Authors and Affiliations

Authors

Contributions

C.L. initiated the project. C.M., P.F. and G.C. designed and implemented the laser system. B.P., S.S., J.V. and D.J.P. implemented the set-up and carried out the experiments. C.L., D.J.P., J.V. and P.G. developed the simulation model. D.J.P., P.G. and C.L. prepared the manuscript. All authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Christoph Lienau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1684 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piglosiewicz, B., Schmidt, S., Park, D. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photon 8, 37–42 (2014). https://doi.org/10.1038/nphoton.2013.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing