Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transparent polymer solar cells employing a layered light-trapping architecture

Abstract

Organic solar cells have unique properties that make them very attractive as a renewable energy source. Of particular interest are semi-transparent cells, which have the potential to be integrated into building façades yet not completely block light. However, making organic cells transparent limits the metal electrode thickness to a few nanometres, drastically reducing its reflectivity and the device photon-harvesting capacity. Here, we propose and implement an ad hoc path for light-harvesting recovery to bring the photon-to-charge conversion up to almost 80% that of its opaque counterpart. We report semi-transparent PTB7:PC71BM cells that exhibit 30% visible light transmission and 5.6% power conversion efficiency. Non-periodic photonic crystals are used to trap near-infrared and near-ultraviolet photons. By modifying the layer structure it is possible to tune the device colour without significantly altering cell performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Polymer blend and device.
Figure 2: External quantum efficiency.
Figure 3: Device transmission.
Figure 4: Photonic crystal design.
Figure 5: Device colour control.

Similar content being viewed by others

References

  1. Bailey-Salzman, R. F., Rand, B. P. & Forrest, S. R. Semitransparent organic photovoltaic cells. Appl. Phys. Lett. 88, 233502 (2006).

    Article  ADS  Google Scholar 

  2. Ng, G.-M. et al. Optical enhancement in semitransparent polymer photovoltaic cells. Appl. Phys. Lett. 90, 103505 (2007).

    Article  ADS  Google Scholar 

  3. Chen, F.-C., Wu, J.-L., Hsieh, K.-H., Chen, W.-C. & Lee, S.-W. Polymer photovoltaic devices with highly transparent cathodes. Org. Electron. 9, 1132–1135 (2008).

    Article  Google Scholar 

  4. Huang, J., Li, G. & Yang, Y. A semi-transparent plastic solar cell fabricated by a lamination process. Adv. Mater. 20, 415–419 (2008).

    Article  Google Scholar 

  5. Koeppe, R. et al. Organic solar cells with semitransparent metal back contacts for power window applications. ChemSusChem 2, 309–313 (2009).

    Article  Google Scholar 

  6. Meiss, J. et al. Efficient semitransparent small-molecule organic solar cells. Appl. Phys. Lett. 95, 213306 (2009).

    Article  ADS  Google Scholar 

  7. Schmidt, H. et al. Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode. Appl. Phys. Lett. 94, 243302 (2009).

    Article  ADS  Google Scholar 

  8. Tanaka, S. et al. Semitransparent organic photovoltaic cell with carbon nanotube–sheet anodes and Ga-doped ZnO cathodes. Synth. Metals 159, 2326–2328 (2009).

    Article  Google Scholar 

  9. Bedeloglua, A., Demirb, A., Bozkurta, Y. & Sariciftci, N. S. Photovoltaic properties of polymer based organic solar cells adapted for non-transparent substrates. Renew. Energy 35, 2301–2306 (2010).

    Article  Google Scholar 

  10. Ameri, T. et al. Fabrication, optical modeling, and color characterization of semitransparent bulk-heterojunction organic solar cells in an inverted structure. Adv. Funct. Mater. 20, 1592–1598 (2010).

    Article  Google Scholar 

  11. Dong, Q. et al. All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer. Org. Electron. 11, 1327–1331 (2010).

    Article  Google Scholar 

  12. Lee, J.-Y., Connor, S. T., Cui, Y. & Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 10, 1276–1279 (2010).

    Article  ADS  Google Scholar 

  13. Nickel, F. et al. Cathodes comprising highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) for semi-transparent polymer solar cells. Org. Electron. 11, 535–538 (2010).

    Article  Google Scholar 

  14. Pandey, A. K. & Samuel, I. D. W. Photophysics of solution-processed transparent solar cells under top and bottom illumination. IEEE J. Sel. Topics Quantum Electron. 16, 1560–1564 (2010).

    Article  ADS  Google Scholar 

  15. Zhou, Y. et al. Indium tin oxide-free and metal-free semitransparent organic solar cells. Appl. Phys. Lett. 97, 153304 (2010).

    Article  ADS  Google Scholar 

  16. Wang, X., Ng, G.-M., Ho, J.-W., Tam, H.-L. & Zhu, F. Efficient semitransparent bulk-heterojunction organic photovoltaic cells with high-performance low processing temperature indium–tin oxide top electrode. IEEE J. Sel. Topics Quantum Electron. 16, 1685–1689 (2010).

    Article  ADS  Google Scholar 

  17. Colsmann, A. et al. Efficient semi-transparent organic solar cells with good transparency color perception and rendering properties. Adv. Energy Mater. 1, 599–603 (2011).

    Article  Google Scholar 

  18. Lee, Y.-Y. et al. Top laminated graphene electrode in a semitransparent polymer solar cell by simultaneous thermal annealing/releasing method. ACS Nano 5, 6564–6570 (2011).

    Article  Google Scholar 

  19. Lewis, J. E., Lafalce, E., Toglia, P. & Jiang, X. Over 30% transparency large area inverted organic solar array by spray. Solar Energy Mater. Solar Cells 95, 2816–2822 (2011).

    Article  Google Scholar 

  20. Meiss, J., Holzmueller, F., Gresser, R., Leo, K. & Riede, M. Near-infrared absorbing semitransparent organic solar cells. Appl. Phys. Lett. 99, 193307 (2011).

    Article  ADS  Google Scholar 

  21. Peh, R. J., Lu, Y., Zhao, F., Lee, C.-L. K. & Kwan, W. L. Vacuum-free processed transparent inverted organic solar cells with spray-coated PEDOT: PSS anode. Solar Energy Mater. Solar Cells 95, 3579–3584 (2011).

    Article  Google Scholar 

  22. Bauer, A., Wahl, T., Hanisch, J. & Ahlswede, E. ZnO: Al cathode for highly efficient, semitransparent 4% organic solar cells utilizing TiOx and aluminum interlayers. Appl. Phys. Lett. 100, 073307 (2012).

    Article  ADS  Google Scholar 

  23. Colsmann, A. et al. Inverted semi-transparent organic solar cells with spray coated, surfactant free polymer top-electrodes. Solar Energy Mater. Solar Cells 98, 118–123 (2012).

    Article  Google Scholar 

  24. Kang, J.-W. et al. All-spray-coated semitransparent inverted organic solar cells: from electron selective to anode layers. Org. Electron. 13, 2940–2944 (2012).

    Article  Google Scholar 

  25. Kim, Y. H. et al. Semi-transparent small molecule organic solar cells with laminated free-standing carbon nanotube top electrodes. Solar Energy Mater. Solar Cells 96, 244–250 (2012).

    Article  Google Scholar 

  26. Tang, Z. et al. Semi-transparent tandem organic solar cells with 90% internal quantum efficiency. Adv. Energy Mater. 2, 1467–1476 (2012).

    Article  Google Scholar 

  27. Kim, H. P., Lee, H. J., Yusoff, A. R. B. M. & Jang, J. Semi-transparent organic inverted photovoltaic cells with solution processed top electrode. Solar Energy Mater. Solar Cells 108, 38–43 (2013).

    Article  Google Scholar 

  28. Tao, C. et al. Semitransparent inverted polymer solar cells with MoO3/Ag/MoO3 as transparent electrode. Appl. Phys. Lett. 95, 053303 (2009).

    Article  ADS  Google Scholar 

  29. Shen, L. et al. Semitransparent polymer solar cells using V2O5/Ag/V2O5 as transparent anodes. Org. Electron. 12, 1223–1226 (2011).

    Article  Google Scholar 

  30. Tao, C., Xie, G., Meng, F., Ruan, S. & Chen, W. Tailoring spatial distribution of the optical field intensity in semitransparent inverted organic solar cells. J. Phys. Chem. C 115, 12611–12615 (2011).

    Article  Google Scholar 

  31. Winkler, T. et al. Efficient large area semitransparent organic solar cells based on highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes. Org. Electron. 12, 1612–1618 (2011).

    Article  Google Scholar 

  32. Jin, H. et al. Efficient large area ITO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 24, 2572–2577 (2012).

    Article  Google Scholar 

  33. Sergeant, N. P. et al. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells. Adv. Mater. 24, 728–732 (2012).

    Article  Google Scholar 

  34. Liu, Z. et al. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano 6, 810–818 (2012).

    Article  Google Scholar 

  35. Krantz, J. et al. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices. Adv. Funct. Mater. 23, 1711–1717 (2013).

    Article  Google Scholar 

  36. Guo, F. et al. ITO-free and fully solution-processed semitransparent organic solar cells with high fill factors. Adv. Energy Mater. 3, 1062–1067 (2013).

    Article  Google Scholar 

  37. Lunt, R. R. & Bulovic, V. Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 98, 113305 (2011).

    Article  ADS  Google Scholar 

  38. Yu, W. et al. Simultaneous improvement in efficiency and transmittance of low bandgap semitransparent polymer solar cells with one-dimensional photonic crystals. Solar Energy Mater. Solar Cells 117, 198–202 (2013).

    Article  Google Scholar 

  39. O'Brien, P. G. et al. Selectively transparent and conducting photonic crystal rear-contacts for thin-film silicon-based building integrated photovoltaics. Opt. Express 19, 17040 (2011).

    Article  ADS  Google Scholar 

  40. Galagan, Y., Debije, M. G. & Blom, P. W. M. Semitransparent organic solar cells with organic wavelength dependent reflectors. Appl. Phys. Lett. 98, 043302 (2011).

    Article  ADS  Google Scholar 

  41. Chen, C.-C. et al. Visibly transparent polymer solar cells produced by solution processing. ACS Nano 6, 7185–7190 (2012).

    Article  Google Scholar 

  42. Dou, L. et al. A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv. Mater. 25, 825–831 (2013).

    Article  ADS  Google Scholar 

  43. Meiss, J. et al. Highly efficient semitransparent tandem organic solar cells with complementary absorber materials. Appl. Phys. Lett. 99, 043301 (2011).

    Article  ADS  Google Scholar 

  44. Chen, K.-S. et al. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy Environ. Sci. 5, 9551–9557 (2012).

    Article  Google Scholar 

  45. Chueh, C.-C. et al. Toward high-performance semi-transparent polymer solar cells: optimization of ultra-thin light absorbing layer and transparent cathode architecture. Adv. Energy Mater. 3, 417–423 (2013).

    Article  Google Scholar 

  46. Lunt, R. R. Theoretical limits for visibly transparent photovoltaics. Appl. Phys. Lett. 101, 043902 (2012).

    Article  ADS  Google Scholar 

  47. He, Z. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photon. 6, 591–595 (2012).

    Article  ADS  Google Scholar 

  48. Martínez-Otero, A., Elias, X., Betancur, R. & Martorell, J. High performance polymer solar cells using an optically enhanced architecture. Adv. Opt. Mater. 1, 37–42 (2013).

    Article  Google Scholar 

  49. Betancur, R. et al. Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells. Solar Energy Mater. Solar Cells 104, 87–91 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Ministerio de Economía y Competitividad (grants MAT2011-28665, IPT-120000-2010-29, IPT-2012-0986-120000 and CSD2007-00046).

Author information

Authors and Affiliations

Authors

Contributions

R.B. and P.R.-G. contributed equally in the optical simulation, design and fabrication of the transparent organic cells, including the non-periodic photonic crystal. R.B., P.R.-G., A.M.-O. and X.E. contributed to the optimization and fabrication of the organic devices. R.B., P.R.-G., A.M.-O. and M.M. contributed to the fabrication of the transparent electrode. The project was planned and supervised by J.M. The manuscript was written by J.M. with the assistance of all other authors.

Corresponding author

Correspondence to Jordi Martorell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betancur, R., Romero-Gomez, P., Martinez-Otero, A. et al. Transparent polymer solar cells employing a layered light-trapping architecture. Nature Photon 7, 995–1000 (2013). https://doi.org/10.1038/nphoton.2013.276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing