Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developments in laser-driven plasma accelerators

Abstract

Laser-driven plasma accelerators provide acceleration gradients that are three orders of magnitude greater than those generated by conventional accelerators, offering the potential to shrink the length of accelerators by the same factor. To date, laser acceleration of electron beams to produce particle energies comparable to those offered by synchrotron light sources has been demonstrated with plasma acceleration stages that are only a few centimetres long. This Review describes the operation principles of laser-driven plasma accelerators, and gives an overview of their development from their proposal in 1979 to recent demonstrations. Potential applications of plasma accelerators are described, and the challenges that must be overcome before they can become practical tools are discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasma waves driven by intense laser pulses.
Figure 2: Laser-driven plasma acceleration schemes.
Figure 3: Self-modulated laser wakefield acceleration.
Figure 4: Generation of quasi-monoenergetic electron beams.
Figure 5: Controlling electron injection with a density ramp.
Figure 6: Generation of undulator radiation by a laser-driven plasma accelerator.

Similar content being viewed by others

References

  1. Esarey, E, Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    ADS  Google Scholar 

  2. Malka, V. et al. Principles and applications of compact laser–plasma accelerators. Nature Phys. 4, 447–453 (2008).

    ADS  Google Scholar 

  3. Norreys, P. A. Laser-driven particle acceleration. Nature Photon. 3, 423–425 (2009).

    ADS  Google Scholar 

  4. Joshi, C. & Malka, V. Focus on laser- and beam-driven plasma accelerators. New J. Phys. 12, 045003 (2010).

    ADS  Google Scholar 

  5. Malka, V. Laser plasma accelerators. Phys. Plasmas 19, 055501 (2012).

    ADS  Google Scholar 

  6. Joshi, C. Plasma accelerators. Sci. Am. 294, 40–47 (2006).

    Google Scholar 

  7. Patel, N. Accelerator physics: The plasma revolution. Nature 449, 133–135 (2007).

    ADS  Google Scholar 

  8. Leemans, W. P. & Esarey, E. Laser-driven plasma-wave electron accelerators. Phys. Today 62, 44 (2009).

    Google Scholar 

  9. Kruer, W. L. The Physics of Laser Plasma Interactions Ch. 6 (Addison-Wesley, 1988).

    Google Scholar 

  10. Gibbon, P. Short Pulse Laser Interactions with Matter: An Introduction Ch. 3 (Imperial College Press, 2005).

    MATH  Google Scholar 

  11. Hooker, S. M. & Webb, C. E. Laser Physics Chs. 7, 12, 17 (Oxford Univ. Press, 2010).

    Google Scholar 

  12. Sprangle, P., Tang, C. M. & Esarey, E. Relativistic self-focusing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. 15, 145–153 (1987).

    ADS  Google Scholar 

  13. Sprangle, P., Esarey, E. & Ting, A. Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 2011–2014 (1990).

    ADS  Google Scholar 

  14. Sprangle, P., Esarey, E., Krall, J. & Joyce, G. Propagation and guiding of intense laser pulses in plasmas. Phys. Rev. Lett. 69, 2200–2203 (1992).

    ADS  Google Scholar 

  15. Durfee, C. G. & Milchberg, H. M. Light pipe for high intensity laser pulses. Phys. Rev. Lett. 71, 2409–2412 (1993).

    ADS  Google Scholar 

  16. Ehrlich, Y. et al. Guiding of high intensity laser pulses in straight and curved plasma channel experiments. Phys. Rev. Lett. 77, 4186–4189 (1996).

    ADS  Google Scholar 

  17. Hosokai, T. et al. Optical guidance of terrawatt laser pulses by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary. Opt. Lett. 25, 10–12 (2000).

    ADS  Google Scholar 

  18. Spence, D. J. & Hooker, S. M. Investigation of a hydrogen plasma waveguide. Phys. Rev. E 63, 015401 (2000).

    ADS  Google Scholar 

  19. Gonsalves, A. J., Rowlands-Rees, T. P., Broks, B. H. P., van der Mullen, J. J. A. M. & Hooker, S. M. Transverse interferometry of a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett. 98, 025002 (2007).

    ADS  Google Scholar 

  20. Lopes, N. C. et al. Plasma channels produced by a laser-triggered high-voltage discharge. Phys. Rev. E 68, 035402 (2003).

    ADS  Google Scholar 

  21. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    ADS  Google Scholar 

  22. Clayton, C. E., Joshi, C., Darrow, C. & Umstadter, D. Relativistic plasma-wave excitation by collinear optical mixing. Phys. Rev. Lett. 54, 2343–2346 (1985).

    ADS  Google Scholar 

  23. Amiranoff, F. et al. Observation of modulational instability in Nd-laser beat-wave experiments. Phys. Rev. Lett. 68, 3710–3713 (1992).

    ADS  Google Scholar 

  24. Clayton, C. E. et al. Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves. Phys. Rev. Lett. 70, 37–40 (1993).

    ADS  Google Scholar 

  25. Tochitsky, S. Ya. et al. Enhanced acceleration of injected electrons in a laser-beat-wave-induced plasma channel. Phys. Rev. Lett. 92, 095004 (2004).

    ADS  Google Scholar 

  26. Rosenbluth, M. N. & Liu, C. S. Excitation of plasma waves by two laser beams. Phys. Rev. Lett. 29, 701–705 (1972).

    ADS  Google Scholar 

  27. Deutsch, M., Meerson, B. & Golub, J. E. Strong plasma wave excitation by a “chirped” laser beat wave. Phys. Fluids B 3, 1773–1780 (1991).

    ADS  Google Scholar 

  28. Andreev, N. E., Gorbunov, L. M., Kirsanov, V. I., Pogosova, A. A. & Ramazashvili, R. R. Resonant excitation of wakefields by a laser pulse in a plasma. JETP Lett. 55, 571–576 (1992).

    ADS  Google Scholar 

  29. Krall, J., Ting, A., Esarey, E. & Sprangle, P. Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys. Rev. E 48, 2157–2161 (1993).

    ADS  Google Scholar 

  30. Nakajima, K. et al. Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. Phys. Rev. Lett. 74, 4428–4431 (1995).

    ADS  Google Scholar 

  31. Modena, A. et al. Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995).

    ADS  Google Scholar 

  32. Wagner, R., Chen, S.-Y., Maksimchuk, A. & Umstadter, D. Electron acceleration by a laser wakefield in a relativistically self-guided channel. Phys. Rev. Lett. 78, 3125–3128 (1997).

    ADS  Google Scholar 

  33. Gordon, D. et al. Observation of electron energies beyond the linear dephasing limit from a laser-excited relativistic plasma wave. Phys. Rev. Lett. 80, 2133–2136 (1998).

    ADS  Google Scholar 

  34. Strickland, D. & Mourou, G. A. Compression of amplified chirped optical pulses. Opt. Commun. 55, 447–449 (1985).

    ADS  Google Scholar 

  35. Mourou, G. A., Barty, C. P. J. & Perry, M. D. Ultrahigh-intensity lasers: physics of the extreme on a tabletop. Phys. Today 51, 22 (1998).

    ADS  Google Scholar 

  36. Rosenzweig, J. B., Breizman, B., Katsouleas, T. & Su, J. J. Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys. Rev. A 44, R6189–R6192 (1991).

    ADS  Google Scholar 

  37. Mora, P. & Antonsen, T. M. Jr Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. Phys. Rev. E 53, R2068–R2071 (1996).

    ADS  Google Scholar 

  38. Pukhov, A. & Meyer-ter-Vehn, J. Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    ADS  Google Scholar 

  39. Mangles, S. P. D. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).

    ADS  Google Scholar 

  40. Geddes, C. G. R. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    ADS  Google Scholar 

  41. Faure, J. et al. A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    ADS  Google Scholar 

  42. Leemans, W. P. et al. GeV electron beams from a centimetre-scale accelerator. Nature Phys. 2, 696–699 (2006).

    ADS  Google Scholar 

  43. Gonsalves, A. J. et al. Tunable laser plasma accelerator based on longitudinal density tailoring. Nature Phys. 7, 862–866 (2011).

    ADS  Google Scholar 

  44. Bobrova, N. A. et al. Simulations of a hydrogen-filled capillary discharge waveguide. Phys. Rev. E 65, 016407 (2001).

    ADS  Google Scholar 

  45. Butler, A., Spence, D. J & Hooker, S. M. Guiding of high-intensity laser pulses with a hydrogen-filled capillary discharge waveguide. Phys. Rev. Lett. 89, 185003 (2002).

    ADS  Google Scholar 

  46. Broks, B. H. P. et al. Modeling of a square pulsed capillary discharge waveguide for interferometry measurements. Phys. Plasmas 14, 023501 (2007).

    ADS  Google Scholar 

  47. Karsch, S. et al. GeV-scale electron acceleration in a gas-filled capillary discharge waveguide. New J. Phys. 9, 415 (2007).

    ADS  Google Scholar 

  48. Ibbotson, T. P. A. et al. Laser-wakefield acceleration of electron beams in a low density plasma channel. Phys. Rev. Spec. Top. Accel. Beams 13, 031301 (2010).

    ADS  Google Scholar 

  49. Kneip, S. et al. Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. Phys. Rev. Lett. 103, 035002 (2009).

    ADS  Google Scholar 

  50. Pollock, B. B. et al. Demonstration of a narrow energy spread, 0.5 GeV electron beam from a two-stage laser wakefield accelerator. Phys. Rev. Lett. 107, 045001 (2011).

    ADS  Google Scholar 

  51. Mo, M. Z. et al. Quasimonoenergetic electron beams from laser wakefield acceleration in pure nitrogen. Appl. Phys. Lett. 100, 074101 (2012).

    ADS  Google Scholar 

  52. Wang, X. et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nature Commun. 4, 1988 (2013).

    ADS  Google Scholar 

  53. Malka, V., Faure, J. & Gauduel, Y. A. Ultra-short electron beams based spatio-temporal radiation biology and radiotherapy. Mutat. Res./Rev. Mutat. Res. 704, 142–151 (2010).

    Google Scholar 

  54. Gauduel, Y. A, Glinec, Y., Rousseau, J.-P, Burgy, F. & Malka, V. High energy radiation femtochemistry of water molecules: early electron-radical pairs processes. Eur. Phys. J. D 60, 121–135 (2010).

    ADS  Google Scholar 

  55. Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Phys. 4, 130–133 (2008).

    ADS  Google Scholar 

  56. Fuchs, M. et al. Laser-driven soft-X-ray undulator source. Nature Phys. 5, 826–829 (2009).

    ADS  Google Scholar 

  57. Kneip, S. et al. Bright spatially coherent synchrotron X-rays from a table-top source. Nature Phys. 6, 980–983 (2010).

    ADS  Google Scholar 

  58. Cipiccia, S. et al. Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nature Phys. 7, 867–871 (2011).

    ADS  Google Scholar 

  59. Kneip, S. et al. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Appl. Phys. Lett. 99, 093701 (2011).

    ADS  Google Scholar 

  60. Fourmaux, S. et al. Single shot phase contrast imaging using laser-produced betatron x-ray beams. Opt. Lett. 36, 2426–2428 (2011).

    ADS  Google Scholar 

  61. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    ADS  Google Scholar 

  62. Grüner, F. et al. Design considerations for table-top, laser-based VUV and X-ray free electron lasers. Appl. Phys. B 86, 431–435 (2007).

    ADS  Google Scholar 

  63. Huang, Z., Ding, Y. & Schroeder, C. B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109, 204801 (2012).

    ADS  Google Scholar 

  64. Maier, A. R. et al. Demonstration scheme for a laser-plasma-driven free-electron laser. Phys. Rev. X 2, 031019 (2012).

    Google Scholar 

  65. Nakajima, K. et al. Operating plasma density issues on large-scale laser-plasma accelerators toward high-energy frontier. Phys. Rev. Spec. Top. Accel. Beams 14, 091301 (2011).

    ADS  Google Scholar 

  66. Schroeder, C. B., Esarey, E. & Leemans, W. P. Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders. Phys. Rev. Spec. Top. Accel. Beams 15, 051301 (2012).

    ADS  Google Scholar 

  67. Van Tilborg, J. et al. Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96, 014801 (2006).

    ADS  Google Scholar 

  68. Ohkubo, T. et al. Temporal characteristics of monoenergetic electron beams generated by the laser wakefield acceleration. Phys. Rev. Spec. Top. Accel. Beams 10, 031301 (2007).

    ADS  Google Scholar 

  69. Debus, A. D. et al. Electron bunch length measurements from laser-accelerated electrons using single-shot THz time-domain interferometry. Phys. Rev. Lett. 104, 084802 (2010).

    ADS  Google Scholar 

  70. Lundh, O. et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nature Phys. 7, 219–222 (2011).

    ADS  Google Scholar 

  71. Fritzler, S. et al. Emittance measurements of a laser-wakefield-accelerated electron beam. Phys. Rev. Lett. 92, 165006 (2004).

    ADS  Google Scholar 

  72. Sears, C. M. S. et al. Emittance and divergence of laser wakefield accelerated electrons. Phys. Rev. Spec. Top. Accel. Beams 13, 092803 (2010).

    ADS  Google Scholar 

  73. Brunetti, E. et al. Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. Phys. Rev. Lett. 105, 215007 (2010).

    ADS  Google Scholar 

  74. Plateau, G. R. et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy. Phys. Rev. Lett. 109, 064802 (2012).

    ADS  Google Scholar 

  75. Weingartner, R. et al. Ultralow emittance electron beams from a laser-wakefield accelerator. Phys. Rev. Spec. Top. Accel. Beams 15, 111302 (2012).

    ADS  Google Scholar 

  76. Kneip, S. et al. Characterization of transverse beam emittance of electrons from a laser-plasma wakefield accelerator in the bubble regime using betatron x-ray radiation. Phys. Rev. Spec. Top. Accel. Beams 15, 021302 (2012).

    ADS  Google Scholar 

  77. Esarey, E., Hubbard, R. F, Leemans, W. P, Ting, A. & Sprangle, P. Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett. 79, 2682–2685 (1997).

    ADS  Google Scholar 

  78. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    ADS  Google Scholar 

  79. Bulanov, S., Naumova, N., Pegoraro, F. & Sakai, J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E 58, R5257–R5260 (1998).

    ADS  Google Scholar 

  80. Brantov, A. V. et al. Controlled electron injection into the wake wave using plasma density inhomogeneity. Phys. Plasmas 15, 073111 (2008).

    ADS  Google Scholar 

  81. Geddes, C. G. R. et al. Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004 (2008).

    ADS  Google Scholar 

  82. Faure, J., Rechatin, C., Lundh, O., Ammoura, L. & Malka, V. Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel. Phys. Plasmas 17, 083107 (2010).

    ADS  Google Scholar 

  83. Suk, H., Barov, N., Rosenzweig, J. B. & Esarey, E. Plasma electron trapping and acceleration in a plasma wake field using a density transition. Phys. Rev. Lett. 86, 1011–1014 (2001).

    ADS  Google Scholar 

  84. Schmid, K. et al. Density-transition based electron injector for laser driven wakefield accelerators. Phys. Rev. Spec. Top. Accel. Beams 13, 091301 (2010).

    ADS  Google Scholar 

  85. Rowlands-Rees, T. P. et al. Laser-driven acceleration of electrons in a partially ionized plasma channel. Phys. Rev. Lett. 100, 105005 (2008).

    ADS  Google Scholar 

  86. Pak, A. et al. Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104, 025003 (2010).

    ADS  Google Scholar 

  87. McGuffey, C. et al. Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104, 025004 (2010).

    ADS  Google Scholar 

  88. Liu, J. S. et al. All-optical cascaded laser wakefield accelerator using ionization-induced injection. Phys. Rev. Lett. 107, 035001 (2011).

    ADS  Google Scholar 

  89. Panasenko, D. et al. Demonstration of a plasma mirror based on a laminar flow water film. J. Appl. Phys. 108, 044913 (2010).

    ADS  Google Scholar 

  90. Sprangle, P. et al. Wakefield generation and GeV acceleration in tapered plasma channels. Phys. Rev. E 63, 056405 (2001).

    ADS  Google Scholar 

  91. Pukhov, A. & Kostyukov, I. Control of laser-wakefield acceleration by the plasma-density profile. Phys. Rev. E 77, 025401 (2008).

    ADS  Google Scholar 

  92. Leemans, W. in ICFA Beam Dynamics Newsletter Vol. 56 (eds Leemans, W., Chou, W. & Uesaka, M.) 10–88 (ICFA, 2011).

    Google Scholar 

  93. Dawson, J. W. et al. High average power lasers for future particle accelerators. AIP Conf. Proc. 1507, 147–153 (2012).

    ADS  Google Scholar 

  94. Richardson, D. J., Nilsson, J. & Clarkson, W. A. High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, B63–B92 (2010).

    Google Scholar 

  95. Ross, I. N., Matousek, P., Towrie, M., Langley, A. J. & Collier, J. L. The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Commun. 144, 125–133 (1997).

    ADS  Google Scholar 

  96. Dubietis, A., Butkus, R. & Piskarskas, A. P. Trends in chirped pulse optical parametric amplification. IEEE J. Sel. Top. Quant. Electron. 12, 163–172 (2006).

    ADS  Google Scholar 

  97. Goodno, G. D. et al. Coherent combination of high-power, zigzag slab lasers. Opt. Lett. 31, 1247–1249 (2006).

    ADS  Google Scholar 

  98. Krauss, G. et al. Synthesis of a single cycle of light with compact erbium-doped fibre technology. Nature Photon. 4, 33–36 (2010).

    ADS  Google Scholar 

  99. Eidam, T. et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power. Opt. Express 19, 255–260 (2011).

    ADS  Google Scholar 

  100. Mourou, G., Brocklesby, B., Tajima, T. & Limpert, J. The future is fibre accelerators. Nature Photon. 7, 258–261 (2013).

    ADS  Google Scholar 

  101. Tamošauskas, G., Dubietis, A., Valiulis, G. & Piskarskas, A. Optical parametric amplifier pumped by two mutually incoherent laser beams. Appl. Phys. B 91, 305–307 (2008).

    ADS  Google Scholar 

  102. Ališauskas, S. et al. Prospects for increasing average power of optical parametric chirped pulse amplifiers via multi-beam pumping. Opt. Commun. 283, 469–473 (2010).

    ADS  Google Scholar 

  103. Kurita, T., Sueda, K., Tsubakimoto, K. & Miyanaga, N. Experimental demonstration of spatially coherent beam combining using optical parametric amplification. Opt. Express 18, 14541–14546 (2010).

    ADS  Google Scholar 

  104. Herrmann, D. et al. Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 34, 2459–2461 (2009).

    ADS  Google Scholar 

  105. Lozhkarev, V. V. et al. Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals. Laser Phys. Lett. 4, 421–427 (2007).

    ADS  Google Scholar 

  106. Skrobol, C. et al. Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm. Opt. Express 20, 4619–4629 (2012).

    ADS  Google Scholar 

  107. Nakajima, K. Plasma-wave resonator for particle-beam acceleration. Phys. Rev. A 45, 1149–1156 (1992).

    ADS  Google Scholar 

  108. Umstadter, D., Esarey, E. & Kim, J. Nonlinear plasma waves resonantly driven by optimized laser pulse trains. Phys. Rev. Lett. 72, 1224–1227 (1994).

    ADS  Google Scholar 

  109. Corner, L. et al. Multiple pulse resonantly enhanced laser plasma wakefield acceleration. AIP Conf. Proc. 1507, 872–873 (2012).

    ADS  Google Scholar 

  110. Fonseca, R. A. et al. in Computational Science—ICCS 2002 (eds Sloot, P. M. A., Tan, C. J. K., Dongarra, J. J. & Hoekstra, A. G.) 342–351 (Lecture Notes in Computer Science Series 2331, Springer, 2002).

    Google Scholar 

Download references

Acknowledgements

The author thanks all past and present members of his research group and collaborators for stimulating discussions. The author thanks R. Bartolini, J. W. Dawson and S. Karsch for providing materials used in the preparation of this review, N. Bourgeois for performing the simulations shown in Fig. 1 and for assistance with its preparation, and C. E. Webb, A. J. Barr and P. A. Walker for helpful comments on the draft article. This work was supported by the Engineering and Physical Sciences Research Council (grant no. EP/H011145/1) and the Leverhulme Trust (grant no. F/08 776/G). The author acknowledges the OSIRIS Consortium (consisting of University of California, Los Angeles, (USA), Instituto Superior Técnico (Portugal) and University of Southern California (USA)) for the use of OSIRIS, and IST for providing access to the OSIRIS 2.0 framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hooker.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooker, S. Developments in laser-driven plasma accelerators. Nature Photon 7, 775–782 (2013). https://doi.org/10.1038/nphoton.2013.234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.234

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing