Letter

Electrically driven single-photon source at room temperature in diamond

Received:
Accepted:
Published online:

Abstract

Single-photon sources that provide non-classical light states on demand have a broad range of applications in quantum communication, quantum computing and metrology1. Single-photon emission has been demonstrated using single atoms2, ions3, molecules4, diamond colour centres5,6 and semiconductor quantum dots7,8,9,10,11. Significant progress in highly efficient8,11 and entangled photons9 sources has recently been shown in semiconductor quantum dots; however, the requirement of cryogenic temperatures due to the necessity to confine carriers is a major obstacle. Here, we show the realization of a stable, room-temperature, electrically driven single-photon source based on a single neutral nitrogen-vacancy centre in a novel diamond diode structure. Remarkably, the generation of electroluminescence follows kinetics fundamentally different from that of photoluminescence with intra-bandgap excitation. This suggests electroluminescence is generated by electron–hole recombination at the defect. Our results prove that functional single defects can be integrated into electronic control structures, which is a crucial step towards elaborate quantum information devices.

  • Subscribe to Nature Photonics for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , & Single-Photon Devices and Applications (Wiley, 2010).

  2. 2.

    , & Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

  3. 3.

    , , , & Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

  4. 4.

    & Single photons on demand from a single molecule at room temperature. Nature 407, 491–493 (2000).

  5. 5.

    , , & Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

  6. 6.

    et al. Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011).

  7. 7.

    et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

  8. 8.

    et al. Electrically driven single-photon source. Science 295, 102–105 (2002).

  9. 9.

    et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).

  10. 10.

    et al. A gallium nitride single-photon source operating at 200 K. Nature Mater. 5, 887–892 (2006).

  11. 11.

    et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

  12. 12.

    et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

  13. 13.

    et al. Experimental realization of Wheeler's delayed-choice gedanken experiment. Science 315, 966–968 (2007).

  14. 14.

    et al. Coherence of single spins coupled to a nuclear bath of varying density. Phys. Rev. B 80, 041201(R) (2009).

  15. 15.

    et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

  16. 16.

    et al. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

  17. 17.

    et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

  18. 18.

    et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

  19. 19.

    , , & Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

  20. 20.

    et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–735 (2010).

  21. 21.

    , , & Ultraviolet emission from a diamond pn junction. Science 292, 1899–1901 (2001).

  22. 22.

    et al. Enhancement in emission efficiency of diamond deep-ultraviolet light emitting diode. Appl. Phys. Lett. 99, 061110 (2011).

  23. 23.

    , , & Diamond light emitting diode activated with Xe optical centers. Phys. Status Solidi (a) 203, 638–642 (2006).

  24. 24.

    et al. Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B 83, 081304(R) (2011).

  25. 25.

    et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

  26. 26.

    Physical Chemistry 4th edn, ch. 26 (Oxford Univ. Press, 1989).

  27. 27.

    et al. Physics of Semiconductor Devices (Wiley-Interscience, 2006).

  28. 28.

    Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit. Phys. Rev. B 79, 235210 (2009).

  29. 29.

    , , & Cathodoluminescence characterization of a nitrogen-doped homoepitaxial diamond thin film. J. Appl. Phys. 105, 093529 (2009).

  30. 30.

    et al. Electron paramagnetic resonance studies of the neutral nitrogen vacancy in diamond. Phys. Rev. B 77, 081201 (2008).

  31. 31.

    et al. Diamond based light-emitting diode for visible single-photon emission at room temperature. Appl. Phys. Lett. 99, 251106 (2011).

Download references

Acknowledgements

The authors acknowledge financial support by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) programme, as well as KAKENHI (grant nos 22102502 and 23681017), the Strategic Information and Communication R&D Promotion Program (SCOPE), the National Institute of Information and Communications Technology (NICT) programme, the JST Core Research for Evolutional Science and Technology (CREST) programme, the European Union (EU) via the grants Solid State Quantum Technology and Metrology Using Spins (SQUTEC), DIAMANT and Solid State Systems for Quantum Information Processing (SOLID), the Deutsche Forschungsgemeinschaft (DFG) via research groups 730, 1482 and 1495, the Max Planck Society, and the Hungarian Scientific Research Fund (OTKA; grant no. K-67886).

Author information

Affiliations

  1. Graduate School of Engineering Science, Osaka University 1-3, Machikane-yama, Toyonaka-city, Osaka, 560-8531, Japan

    • N. Mizuochi
  2. JST PRESTO, 4-1-8 Honcho Kawaguchi, Saitama, 333-0012, Japan

    • N. Mizuochi
  3. Energy Technology Research Institute-National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

    • T. Makino
    • , H. Kato
    • , D. Takeuchi
    • , M. Ogura
    • , H. Okushi
    •  & S. Yamasaki
  4. JST CREST, 4-1-8 Honcho Kawaguchi, Saitama, 333-0012, Japan

    • T. Makino
    • , H. Kato
    • , D. Takeuchi
    • , M. Ogura
    • , H. Okushi
    •  & S. Yamasaki
  5. 3rd Physics Institute and Research Center SCoPE, Pfaffenwaldring 57, D-70550 Stuttgart, Germany

    • M. Nothaft
    • , P. Neumann
    •  & J. Wrachtrup
  6. Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, PO Box 49, H-1525, Hungary

    • A. Gali
  7. Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki út 8, H-1111 Budapest, Hungary

    • A. Gali
  8. Institut für Quantenoptik, Universität Ulm, Albert Einstein Allee 11, D-89069 Ulm, Germany

    • F. Jelezko

Authors

  1. Search for N. Mizuochi in:

  2. Search for T. Makino in:

  3. Search for H. Kato in:

  4. Search for D. Takeuchi in:

  5. Search for M. Ogura in:

  6. Search for H. Okushi in:

  7. Search for M. Nothaft in:

  8. Search for P. Neumann in:

  9. Search for A. Gali in:

  10. Search for F. Jelezko in:

  11. Search for J. Wrachtrup in:

  12. Search for S. Yamasaki in:

Contributions

T.M., H.K., D.T. and M.O. synthesized and fabricated the diamond device. N.M. built a home-made confocal microscope system with assistance from P.N., F.J. and J.W., and carried out the measurements. N.M., M.N., H.O., S.Y., P.N., F.J. and J.W. contributed to the data analysis. A.G. carried out group theory analysis and the ab initio calculations. N.M. and J.W. wrote the manuscript with feedback from all authors. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to N. Mizuochi.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information