Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum communication without the necessity of quantum memories

Abstract

Quantum physics is known to allow for completely new ways to create, manipulate and store information. Quantum communication—the ability to transmit quantum information—is a primitive necessary for any quantum internet. At its core, quantum communication generally requires the formation of entangled links between remote locations. The performance of these links is limited by the classical signalling time between such locations, necessitating the need for long-lived quantum memories. Here, we present the design of a communications network that neither requires the establishment of entanglement between remote locations nor the use of long-lived quantum memories. The rate at which quantum data can be transmitted along the network is only limited by the time required to perform efficient local gate operations. Our scheme therefore has the potential to provide higher communications rates than previously thought possible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the direct transmission of the information from one communication node to another using a transmitter unit and receiver unit.
Figure 2: Schematic of the transmission of a quantum signal using a redundant quantum parity code.
Figure 3

Similar content being viewed by others

References

  1. Bennett, C. H. & Brassard, G. in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing 175–179 (IEEE Press, 1984).

  2. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  3. Gisin, N. & Thew, R. Quantum communication. Nature Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  4. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  5. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  6. Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A. & Wootters, W. K. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  7. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–726 (1996).

    Article  ADS  Google Scholar 

  8. Enk, S. J., Cirac, J. I. & Zoller, P. Photonic channels for quantum communication. Science 279, 205–208 (1998).

    Article  ADS  Google Scholar 

  9. Briegel, H-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Google Scholar 

  10. Dür, W., Briegel, H-J., Cirac, J. I. & Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169–181 (1999).

    Article  ADS  Google Scholar 

  11. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  12. Van Loock, P. et al. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006).

    Article  ADS  Google Scholar 

  13. Zhao, B., Chen, Z-B., Chen, Y-A., Schmiedmayer, J. & Pan, J-W. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

    Article  ADS  Google Scholar 

  14. Yuan, Z. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    Article  ADS  Google Scholar 

  15. Goebel, A. M. et al. Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008).

    Article  ADS  Google Scholar 

  16. Simon, C., de Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H. & Gisin, N. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

    Article  ADS  Google Scholar 

  17. Tittel, W. et al. Photon-echo quantum memory in solid state systems. Laser Photon. Rev. 4, 244–267 (2009).

    Article  ADS  Google Scholar 

  18. Sangouard, N., Dubessy, R. & Simon, C. Quantum repeaters based on single trapped ions. Phys. Rev. A 79, 042340 (2009).

    Article  ADS  Google Scholar 

  19. Pan, J-W., Simon, S., Brukner, C. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001).

    Article  ADS  Google Scholar 

  20. Dür, W. & Briegel, H. J. Entanglement purification and quantum error correction. Rep. Prog. Phys. 70, 1381–1424 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  21. Munro, W. J., Harrison, K. A., Stephens, A. M., Devitt, S. J. & Nemoto, K. From quantum multiplexing to high-performance quantum networking. Nature Photon. 4, 792–796 (2010).

    Article  ADS  Google Scholar 

  22. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011) and references therein.

    Article  ADS  Google Scholar 

  23. Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

    Article  ADS  Google Scholar 

  24. Knill, E. & Laflamme, R. Concatenated quantum codes. Preprint at http://arxiv.org/abs/quant-ph/9608012 (1996).

  25. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  26. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007), and references therein.

    Article  ADS  Google Scholar 

  27. Hayes, A. J. F., Gilchrist, A., Myers, C. R. & Ralph, T. C. Utilizing encoding in scalable linear optics quantum computing. J. Opt. B 6, 533–541 (2004).

    Article  ADS  Google Scholar 

  28. Ralph, T. C., Hayes, A. J. F. & Gilchrist, A. Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005).

    Article  ADS  Google Scholar 

  29. Devitt, S. J., Nemoto, K. & Munro, W. J. The idiots guide to quantum error correction. Preprint at http://arxiv.org/abs/0905.2794v2 (2009).

  30. Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Preprint at http://arxiv.org/abs/0904.2557 (2009).

  31. Jiang, L. et al. Quantum repeater with encoding. Phys. Rev. A 79, 032325 (2009).

    Article  ADS  Google Scholar 

  32. Fowler, A. G. et al. Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010).

    Article  ADS  Google Scholar 

  33. Popescu, S. An optical method for teleportation. Preprint at http://arxiv.org/abs/quant-ph/9501020 (1995).

  34. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  35. Thew, R. T., Acin, A., Zbinden, H. & Gisin, N. Bell-type test of energy-time entangled qutrits. Phys. Rev. Lett. 93, 010503 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  36. O'Sullivan, M. N., Khan, I. A., Boyd, R. W. & Howell, J. C. Pixel entanglement: experimental realization of optically entangled d = 3 and d = 6 qudits. Phys. Rev. Lett. 94, 220501 (2005).

    Article  ADS  Google Scholar 

  37. Oemrawsingh, S. et al. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett. 95, 240501 (2005).

    Article  ADS  Google Scholar 

  38. Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photons pairs. Phys. Rev. Lett. 95, 260501 (2005).

    Article  ADS  Google Scholar 

  39. Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  40. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) through its Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) and a grant from the National Institute of Information and Communications Technology (NICT).

Author information

Authors and Affiliations

Authors

Contributions

W.J.M., K.A.H. and K.N. conceived the original concept. All authors contributed to the final design of the network. W.J.M., A.M.S. and K.A.H. prepared the manuscript with input from S.J.D. and K.N.

Corresponding author

Correspondence to W. J. Munro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 641 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munro, W., Stephens, A., Devitt, S. et al. Quantum communication without the necessity of quantum memories. Nature Photon 6, 777–781 (2012). https://doi.org/10.1038/nphoton.2012.243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing