Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion

Abstract

The preparation and storage of photonic entanglement are central to the achievement of scalable linear optical quantum computation1,2,3 (LOQC). The most widely used photonic entanglement source (a spontaneous parametric downconversion (SPDC) source)4,5 is not directly suitable for storage, because its working frequency bandwidth is significantly larger than any available quantum memory. To remedy this problem, cavity-enhanced narrow-band SPDC sources6,7,8,9,10,11,12 have been developed. However, the storage of cavity-enhanced narrow-band entangled photons has not yet been achieved. Also, the spectral correlations between the entangled photons can make them practically useless for scalable LOQC5,13,14. Here, we report the preparation and storage of frequency-uncorrelated narrowband (5 MHz) entangled photons from a cavity-enhanced SPDC source. The frequency correlation between the entangled photons is eliminated by changing the continuous UV pumping beam to short pulses. The storage of the polarization state of a single photon, and of a photon entangled with another flying in the fibre, is demonstrated. Our work demonstrates a quantum interface between narrow-band entangled photons from cavity SPDC and atomic quantum memory, and thus provides an important tool towards the achievement of all-optical quantum information processing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Characterizations of storage medium.
Figure 3: Performance of the quantum memory.

Similar content being viewed by others

References

  1. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  2. Browne, D. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  3. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  4. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  5. Pan, J. W. et al. Multi-photon entanglement and interferometry. Rev. Mod. Phys. (submitted); preprint at http://arxiv.org/abs/0805.2853.

  6. Ou, Z. Y. & Lu, Y.-J. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 83, 2556–2559 (1999).

    Article  ADS  Google Scholar 

  7. Kuklewicz, C. et al. Time-bin-modulated biphotons from cavity enhanced down-conversion. Phys. Rev. Lett. 97, 223601 (2006).

    Article  ADS  Google Scholar 

  8. Wolfgramm, F. et al. Bright filter-free source of indistinguishable photon pairs. Opt. Express 16, 18145–18151 (2008).

    Article  ADS  Google Scholar 

  9. Bao, X. H. et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys. Rev. Lett. 101, 190501 (2008).

    Article  ADS  Google Scholar 

  10. Scholz, M. et al. Statisics of narrow-band single photons for quantum memories generation by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett. 102, 063603 (2009).

    Article  ADS  Google Scholar 

  11. Yang, J. et al. Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources. Phys. Rev. A 80, 042321 (2009).

    Article  ADS  Google Scholar 

  12. Nielsen, B., Neergaard-Nielsen, J. & Polzik, E. Time gating of heralded single photons for atomic memories. Opt. Lett. 34, 3872–3874 (2009).

    Article  ADS  Google Scholar 

  13. Ou, Z. Y. et al. Photon bunching and multiphoton interference in parametric down-conversion. Phys. Rev. A 60, 593–604 (1999).

    Article  ADS  Google Scholar 

  14. Humble, T. & Grice, W. Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates. Phys. Rev. A 77, 022312 (2008).

    Article  ADS  Google Scholar 

  15. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  16. Politi, A. et al. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  17. Wagenknecht, C. et al. Experimental demonstration of a heralded entanglement source. Nature Photon. 4, 549–552 (2010).

    Article  ADS  Google Scholar 

  18. Barz, S. et al. Heralded generation of entangled photon pairs. Nature Photon. 4, 553–556 (2010).

    Article  ADS  Google Scholar 

  19. Reim, K. F. et al. Towards high-speed optical memories. Nature Photon. 4, 218–221 (2010).

    Article  ADS  Google Scholar 

  20. Akiba, K. et al. Storage and retrieval of nonclassical photon pairs and conditional single photons generated by the parametric down-conversion process. New J. Phys. 11, 013049 (2009).

    Article  ADS  Google Scholar 

  21. Mosley, P. et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).

    Article  ADS  Google Scholar 

  22. Raymer, M. G. et al. Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity. Phys. Rev. A 72, 023825 (2005).

    Article  ADS  Google Scholar 

  23. Rarity, J. et al. Non-classical interference between independent sources. J. Opt. B 7, S171–S175 (2005).

    Article  Google Scholar 

  24. Fleischhauer, M. and Lukin, M. D. Dark-State Polaritons in Electromagnetically Induced Transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  Google Scholar 

  25. Phillips, D. F. et al. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  26. Liu, C. et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  27. Chaneliere, T. et al. Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438, 833–836 (2005).

    Article  ADS  Google Scholar 

  28. Eisaman, M. D. et al. Electromagnetically induced transparency with tunable single-photon pulses. Nature 438, 837–841 (2005).

    Article  ADS  Google Scholar 

  29. Choi, K. S. et al. Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008).

    Article  ADS  Google Scholar 

  30. Appel, J. et al. Quantum memory for squeezed light. Phys. Rev. Lett. 100, 093602 (2008).

    Article  ADS  Google Scholar 

  31. Ketterle, W. et al. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett. 70, 2253–2256 (1993).

    Article  ADS  Google Scholar 

  32. Chou, C-W. et al. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004).

    Article  ADS  Google Scholar 

  33. Zhao, B. et al. A millisecond quantum memory for scalable quantum networks. Nature Phys. 5, 95–99 (2009).

    Article  ADS  Google Scholar 

  34. Clauser, J. F., Horne, M., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  35. Bodiya, T. P. & Duan, L. M. Scalable generation of graph-state entanglement through realistic linear optics. Phys. Rev. Lett. 97, 143601 (2006).

    Article  ADS  Google Scholar 

  36. Chen, Z. B. et al. Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007).

    Article  ADS  Google Scholar 

  37. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  38. Chen, Y. A. et al. Heralded generation of an atomic NOON state. Phys. Rev. Lett. 104, 043601 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the National Fundamental Research Program of China (grant no. 2011CB921300), the Chinese Academy of Sciences, the Austrian Science Fund, the European Commission through the European Research Council Grant and the Specific Targeted Research Projects of Hybrid Information Processing.

Author information

Authors and Affiliations

Authors

Contributions

X-M.J., J.Y., H.Z., Z.-B.C., Y-J.D., X-H.B, S.C., B.Z. and J-W.P. designed the experiment. H.Z., X-M.J., J.Y., H-N.D., S-J.Y., T-M.Z., J.R., Y.H., X.J., F.Y., G-S.P., Z-S.Y. and S.C. performed the experiment and analysed the data. X-M.J., J.Y., H.Z., Y-J.D., X-H.B, B.Z. and J-W.P. edited the manuscript.

Corresponding authors

Correspondence to Bo Zhao or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Jin, XM., Yang, J. et al. Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nature Photon 5, 628–632 (2011). https://doi.org/10.1038/nphoton.2011.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing