Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

High-energy attosecond light sources

Abstract

The development of attosecond technology is one of the most significant achievements in the field of ultrafast optics over the past decade. Since the first experimental demonstration of attosecond pulses just ten years ago, novel techniques have been introduced for the generation, characterization and application of subfemtosecond pulses. The development of attosecond tools is continuously triggering the introduction of new spectroscopic and measurement methods, which will offer the opportunity to investigate unexplored research areas with unprecedented time resolution. The wealth of ultrafast processes, which can be investigated by taking advantage of attosecond temporal resolution, can be greatly extended by the development of high-intensity attosecond sources. This Review covers a selection of recent advances in the field of attosecond technology, with particular attention being given to the generation and application of high-energy attosecond pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolated attosecond pulses from gases.
Figure 2: Temporal gating.
Figure 3: Ionization gating: electron quantum path analysis.
Figure 4: Isolated attosecond pulses by harmonic generation from a solid surface.
Figure 5: Attosecond nonlinear Fourier transform spectroscopy.
Figure 6: Attosecond pump–probe experiment for investigating electron motion inside an atom.

Similar content being viewed by others

References

  1. Zewail, A. H. Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    Google Scholar 

  2. Agostini, P. & DiMauro, L. F. The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813–855 (2004).

    ADS  Google Scholar 

  3. Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    ADS  Google Scholar 

  4. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    ADS  Google Scholar 

  5. Nisoli, M. & Sansone, G. New frontiers in attosecond science. Prog. Quant. Electron. 33, 17–59 (2009).

    ADS  Google Scholar 

  6. Li, X. F., L'Huillier, A., Ferray, M., Lompré, L. A. & Mainfray, G. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751–5761 (1989).

    ADS  Google Scholar 

  7. McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).

    ADS  Google Scholar 

  8. Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280, 1412–1415 (1998).

    ADS  Google Scholar 

  9. Bartels, R. et al. Shaped-pulse optimization of coherent soft-X-rays. Nature 406, 164–166 (2000).

    ADS  Google Scholar 

  10. Schnürer, R. et al. Absorption-limited generation of coherent ultrashort soft-X-Ray pulses. Phys. Rev. Lett. 83, 722–725 (1999).

    ADS  Google Scholar 

  11. Hergott, J.F. et al. Extreme-ultraviolet high-order harmonic pulses in the microjoule range. Phys. Rev. A 66, 021801(R) (2002).

    ADS  Google Scholar 

  12. Takahashi, E., Nabekawa, Y., Otsuka, T., Obara, M. & Midorikawa, K. Generation of highly coherent submicrojoule soft X-rays by high-order harmonics. Phys. Rev. A 66, 021802 (2002).

    ADS  Google Scholar 

  13. Kazamias, S. et al. Global optimization of high harmonic generation. Phys. Rev. Lett. 90, 193901 (2003).

    ADS  Google Scholar 

  14. Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).

    ADS  Google Scholar 

  15. Ditmire, T., Crane, J. K., Nguyen, H., DaSilva, L. B. & Perry, M. D. Energy-yield and conversion efficiency measurements of high-order harmonic radiation. Phys. Rev. A 51, R902–R905 (1995).

    ADS  Google Scholar 

  16. Midorikawa, K., Nabekawa, Y. & Suda, A. XUV multiphoton processes with intense high-order harmonics. Prog. Quant. Electron. 32, 43–88 (2008).

    ADS  Google Scholar 

  17. Takahashi, E. J., Hasegawa, H. & Midorikawa, K. Generation of 10-mJ coherent extreme-ultraviolet light by use of high-order harmonics. Opt. Lett. 27, 1920–1922 (2002).

    ADS  Google Scholar 

  18. Nabekawa, Y. et al. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime. Phys. Rev. Lett. 97, 153904 (2006).

    ADS  Google Scholar 

  19. Shimizu, T. et al. Observation and analysis of an interferometric autocorrelation trace of an attosecond pulse train. Phys. Rev. A 75, 033817 (2007).

    ADS  Google Scholar 

  20. Popmintchev, T., Chen, M.C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nature Photon. 4, 822–832 (2010).

    ADS  Google Scholar 

  21. Seres, J. et al. Coherent superposition of laser-driven soft-X-ray harmonics from successive sources. Nature Phys. 3, 878–883 (2007).

    ADS  Google Scholar 

  22. Goulielmakis, E. et al. Single-cycle nonlinear optics. Science 320, 1614–1617 (2008).

    ADS  Google Scholar 

  23. Corkum, P. B., Burnett, N. H. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    ADS  Google Scholar 

  24. Tcherbakoff, O., Mével, E., Descamps, D., Plumridge, J. & Constant, E. Time-gated high-order harmonic generation. Phys. Rev. A 68, 043804 (2003).

    ADS  Google Scholar 

  25. Strelkov, V. et al. Single attosecond pulse production with an ellipticity-modulated driving IR pulse. J. Phys. B 38, L161–L167 (2005).

    Google Scholar 

  26. Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

    ADS  Google Scholar 

  27. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    ADS  Google Scholar 

  28. Mauritsson, J. et al. Attosecond pulse trains generated using two color laser fields. Phys. Rev. Lett. 97, 013001 (2006).

    ADS  Google Scholar 

  29. Chang, Z. Controlling attosecond pulse generation with a double optical gating. Phys. Rev. A 76, 051403(R) (2007).

    ADS  Google Scholar 

  30. Mashiko, H. et al. Double optical gating of high-order harmonic generation with carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100, 103906 (2008).

    ADS  Google Scholar 

  31. Mashiko, H., Gilbertson, S., Li, C., Moon, E. & Zenghu, C. Optimizing the photon flux of double optical gated high-order harmonic spectra. Phys. Rev. A 77, 063423 (2008).

    ADS  Google Scholar 

  32. Feng, X. et al. Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers. Phys. Rev. Lett. 103, 183901 (2009).

    ADS  Google Scholar 

  33. Gilbertson, S. et al. Isolated attosecond pulse generation using multicycle pulses directly from a laser amplifier. Phys. Rev. A 81, 043810 (2010).

    ADS  Google Scholar 

  34. Tzallas, P. et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields. Nature Phys. 3, 846–850 (2007).

    ADS  Google Scholar 

  35. Charalambidis, D. et al. Exploring intense attosecond pulses. New J. Phys. 10, 025018 (2008).

    ADS  Google Scholar 

  36. Skantzakis, E., Tzallas, P., Kruse, J., Kalpouzos, C. & Charalambidis, D. Coherent continuum extreme ultraviolet radiation in the sub100nJ range generated by a high-power many-cycle laser field. Opt. Lett. 34, 1732–1734 (2009).

    ADS  Google Scholar 

  37. Tate, J. et al. Scaling of wave-packet dynamics in an intense midinfrared field. Phys. Rev. Lett. 98, 013901 (2007).

    ADS  Google Scholar 

  38. Colosimo, P. et al. Scaling strong-field interactions towards the classical limit. Nature Phys. 4, 386–389 (2008).

    ADS  Google Scholar 

  39. Shiner, A. D. et al. Wavelength scaling of high harmonic generation efficiency. Phys. Rev. Lett. 103, 073902 (2009).

    ADS  Google Scholar 

  40. Takahashi, E., Kanai, T., Nabekawa, Y. & Midorikawa, K. 10 mJ class femtosecond optical parametric amplifier for generating soft X-ray harmonics. Appl. Phys. Lett. 93, 041111 (2008).

    ADS  Google Scholar 

  41. Popmintchev, T. et al. Extended phase matching of high harmonics driven by mid-infrared light. Opt. Lett. 33, 2128–2130 (2008).

    ADS  Google Scholar 

  42. Merdji, H. et al. Isolated attosecond pulses using a detuned second-harmonic field. Opt. Lett. 32, 3134–3136 (2007).

    ADS  Google Scholar 

  43. Calegari, F. et al. Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver. Opt. Lett. 34, 3125–3127 (2009).

    ADS  Google Scholar 

  44. Takahashi, E. J., Lan, P., Mücke, O. D., Nabekawa, Y. & Midorikawa, K. Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse. Phys. Rev. Lett. 104, 233901 (2010).

    ADS  Google Scholar 

  45. Lan, P., Takahashi, E. J. & Midorikawa, K. Optimization of infrared two-color multicycle field synthesis for intenseisolatedattosecond-pulse generation. Phys. Rev. A 82, 053413 (2010).

    ADS  Google Scholar 

  46. Cao, W., Lu, P., Lan, P., Wang, X. & Yang, G. Single-attosecond pulse generation with an intense multicycle driving pulses. Phys. Rev. A 74, 063821 (2006).

    ADS  Google Scholar 

  47. Kim, K. T., Kim, C. M., Baik, M. G., Umesh, G. & Nam, C. H. Single sub50attosecond pulse generation from chirp-compensated harmonic radiation using material dispersion. Phys. Rev. A 69, 051805(R) (2004).

    ADS  Google Scholar 

  48. Abel, M. J. et al. Isolated attosecond pulses from ionization gating of high-harmonic emission. Chem. Phys. 366, 9–14 (2009).

    Google Scholar 

  49. Thomann, I. et al. Characterizing isolated attosecond pulses from hollow-core waveguides using multi-cycle driving pulses. Opt. Express 17, 4611–4633 (2009).

    ADS  Google Scholar 

  50. Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nature Photon. 4, 875–879 (2010).

    ADS  Google Scholar 

  51. Lewenstein, M., Balcou, Ph., Ivanov, M. Y., L'Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser pulses. Phys. Rev. A 49, 2117–2132 (1994).

    ADS  Google Scholar 

  52. Sansone, G., Vozzi, C., Stagira, S. & Nisoli, M. Nonadiabatic quantum path analysis of high-order harmonic generation: role of the carrier-envelope phase on short and long paths. Phys. Rev. A. 70, 013411 (2004).

    ADS  Google Scholar 

  53. Priori, E. et al. Nonadiabatic three-dimensional model of high-order harmonic generation in the fewopticalcycle regime. Phys. Rev. A 61, 63801 (2000).

    ADS  Google Scholar 

  54. Chakraborty, H. S., Gaarde, M. B. & Couairon, A. Single attosecond pulses from high harmonics driven by self-compressed filaments. Opt. Lett. 31, 3662–3664 (2006).

    ADS  Google Scholar 

  55. Gaarde, M. B. & Couairon, A. Intensity spikes in laser filamentation: diagnostics and application. Phys. Rev. Lett. 103, 043901 (2009).

    ADS  Google Scholar 

  56. Steingrube, D. S. et al. Generation of high-order harmonics with ultra-short pulses from filamentation. Opt. Express 17, 16177–16182 (2009).

    ADS  Google Scholar 

  57. Steingrube, D. S. et al. High-order harmonic generation directly from a filament. New J. Phys. 13, 043022 (2011).

    ADS  Google Scholar 

  58. Thaury, C. & Quéré, F. High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms. J. Phys. B 43, 213001 (2010).

    ADS  Google Scholar 

  59. Quéré, F. et al. Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006).

    ADS  Google Scholar 

  60. Lichters, R., MeyerterVehn, J. & Pukhov, A. Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425–3437 (1996).

    ADS  Google Scholar 

  61. Nomura, Y. et al. Attosecond phase locking of harmonics emitted from laser-produced plasmas. Nature Phys. 5, 124–128 (2009).

    ADS  Google Scholar 

  62. Tsakiris, G. D., Eidmann, K., MeyerterVehn, J. & Krausz, F. Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006).

    ADS  Google Scholar 

  63. Baeva, T., Gordienko, S. & Pukhov, A. Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006).

    ADS  Google Scholar 

  64. Baeva, T., Gordienko, S. & Pukhov, A. Relativistic plasma control for single attosecond X-ray burst generation. Phys. Rev. E 74, 065401(R) (2006).

    ADS  Google Scholar 

  65. Dromey, B. et al. High harmonic generation in the relativistic limit. Nature Phys. 2, 456–459 (2006).

    ADS  Google Scholar 

  66. Dromey, B. et al. Bright multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99, 085001 (2007).

    ADS  Google Scholar 

  67. Rykovanov, S. G., Geissler, M., MeyerterVehn, J. & Tsakiris, G. D. Intense single attosecond pulses from surface harmonics using the polarization gating technique. New J. Phys. 10, 025025 (2008).

    ADS  Google Scholar 

  68. Naumova, N. M., Nees, J. A., Sokolov, I. V., Hou, B. & Mourou, G. A. Relativistic generation of isolated attosecond pulses in a λ3 focal volume. Phys. Rev. Lett. 92, 063902 (2004).

    ADS  Google Scholar 

  69. Dubietis, A., Jonušauskas, F. & Piskarskas, A. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88, 437–440 (1992).

    ADS  Google Scholar 

  70. Herrmann, D. et al. Generation of subthreecycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification. Opt. Lett. 34, 2459–2461 (2009).

    ADS  Google Scholar 

  71. Sekikawa, T., Kosuge, A., Kanai, T. & Watanabe, S. Nonlinear optics in the extreme ultraviolet. Nature 432, 605–608 (2004).

    ADS  Google Scholar 

  72. Kosuge, A. et al. Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet. Phys. Rev. Lett. 97, 263901, (2006).

    ADS  Google Scholar 

  73. Kobayashi, Y., Sekikawa, T., Nabekawa, Y. & Watanabe, S. 27-fs extreme ultraviolet pulse generation by high-order harmonics. Opt. Lett. 23, 64–66 (1998).

    ADS  Google Scholar 

  74. Tzallas, P., Charalambidis, D., Papadogiannis, N. A., Witte, K. & Tsakiris, G. D. Direct observation of attosecond light bunching. Nature 426, 267–271 (2003).

    ADS  Google Scholar 

  75. Okino, T. et al. Attosecond nonlinear Fourier transformation spectroscopy of CO2 in extreme ultraviolet wavelength region. J. Chem. Phys. 129, 161103 (2008).

    ADS  Google Scholar 

  76. Furukawa, Y. et al. Nonlinear Fourier-transform spectroscopy of D2 using high-order harmonic radiation. Phys. Rev. A 82, 013421 (2010).

    ADS  Google Scholar 

  77. Skantzakis, E. et al. Tracking autoionizingwavepacket dynamics at the 1-fs temporal scale. Phys. Rev. Lett. 105, 043902 (2010).

    ADS  Google Scholar 

  78. Cavalieri, S., Eramo, R., Materazzi, M., Corsi, C. & Bellini, M. Ramsey-type spectroscopy with high-order harmonics. Phys. Rev. Lett. 89, 133002 (2002).

    ADS  Google Scholar 

  79. Hu, S. X. & Collins, L. A. Attosecond pump probe: exploring ultrafast electron motion inside an atom. Phys. Rev. Lett. 96, 073004 (2006).

    ADS  Google Scholar 

  80. Wehlitz, R. et al. Electron-energy and angular distributions in the double photoionization of helium. Phys. Rev. Lett. 67, 3764–3767 (1991).

    ADS  Google Scholar 

  81. Chu, W.C. & Lin, C. D. Theory of ultrafast autoionization dynamics of Fano resonances. Phys. Rev. A 82, 053415 (2010).

    ADS  Google Scholar 

  82. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    ADS  MATH  Google Scholar 

  83. Wickenhauser, M., Burgdörfer, J., Krausz, F. & Drescher, M. Time resolved Fano resonances. Phys. Rev. Lett. 94, 023002 (2005).

    ADS  MATH  Google Scholar 

  84. Argenti, L. & Lindroth, E. Ionization branching ratio control with a resonance attosecond clock. Phys. Rev. Lett. 105, 053002 (2010).

    ADS  Google Scholar 

  85. Mashiko, H. et al. Extreme ultraviolet supercontinuua supporting pulse durations of less than one atomic unit of time. Opt. Lett. 34, 3337–3339 (2009).

    ADS  Google Scholar 

Download references

Acknowledgements

The research leading to the results presented in this Review received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n.227355-ELYCHE. The authors acknowledge financial support from the Italian Ministry of Research (FIRB-IDEAS RBID08CRXK), support from the European Union under contract n.228334 JRA-ALADIN (Laserlab Europe II) and from MC-RTN ATTOFEL (FP7-238362). G.S. acknowledges financial support from the Alexander von Humboldt Foundation (project Tirinto).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Nisoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nature Photon 5, 655–663 (2011). https://doi.org/10.1038/nphoton.2011.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing