Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate

Subjects

Abstract

The realization of semiconductor laser diodes on Si substrates would permit the creation of complex optoelectronic circuits, enabling chip-to-chip and system-to-system optical communications. Direct epitaxial growth of IIIV semiconductor materials on Si or Ge is one of the most promising candidates for the fabrication of electrically pumped light sources on a Si platform. Here, we describe the first quantum-dot laser to be realized on a Ge substrate. To fabricate the laser, a single-domain GaAs buffer layer was first grown on the Ge substrate using the Ga prelayer technique. A long-wavelength InAs/GaAs quantum-dot structure was then fabricated on the high-quality GaAs buffer layer. Lasing at a wavelength of 1,305 nm with a low threshold current density of 55.2 A cm–2 was observed under continuous-wave current drive at room temperature. The results suggest that long-wavelength InAs/GaAs quantum-dot lasers on Si substrates may be realized by epitaxial growth on Ge-on-Si substrates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural properties of GaAs buffer layer on Ge substrate.
Figure 2: InAs QD laser diode on a Ge substrate.
Figure 3: Room-temperature emission spectra, light output power and electrical characteristics.
Figure 4: Temperature-dependent light output power characteristics.

Similar content being viewed by others

References

  1. Won, R. Integrating silicon photonics. Nature Photon. 4, 498–499 (2010).

    Article  Google Scholar 

  2. Liang, D. & Bowers, J. E. Recent progress in lasers on silicon. Nature Photon. 4, 511–517 (2010).

    Article  ADS  Google Scholar 

  3. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  4. Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetector. Nature Photon. 4, 527–534 (2010).

    Article  ADS  Google Scholar 

  5. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  6. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170–175 (2011).

    Article  ADS  Google Scholar 

  7. Fischer, R. et al. Low threshold laser operation at room temperature in GaAs/(Al,Ga)As structures grown directly on (100)Si. Appl. Phys. Lett. 48, 1360–1361 (1986).

    Article  ADS  Google Scholar 

  8. Fischer, R. et al. Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy. J. Appl. Phys. 58, 374–381 (1985).

    Article  ADS  Google Scholar 

  9. Akatsu, T. et al. Germanium-on-insulator (GeOI) substrates—a novel engineered substrate for future high performance devices. Mater. Sci. Semicond. Proc. 9, 444–448 (2006).

    Article  Google Scholar 

  10. Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W. & Fitzgerald, E. A. Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718–1720 (1998).

    Article  ADS  Google Scholar 

  11. Brammertz, G. et al. GaAs on Ge for CMOS. Thin Solid Films 517, 148–151 (2008).

    Article  ADS  Google Scholar 

  12. D'Hondt, M. et al. High quality InGaAs/AlGaAs lasers grown on Ge substrates. J. Crystal Growth 195, 655–659 (1998).

    Article  ADS  Google Scholar 

  13. Sugawara, M. & Usami, M. Quantum dot devices handling the heat. Nature Photon. 3, 30–31 (2009).

    Article  ADS  Google Scholar 

  14. Liu, H. Y. et al. Improved performance of 1.3 µm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer. Appl. Phys. Lett. 85, 704–706 (2004).

    Article  ADS  Google Scholar 

  15. Yang, J., Bhattacharya, P. & Mi, Z. High-performance In0.5Ga0.5As/GaAs quantum-dot lasers on silicon with multiple-layer quantum-dot dislocation filters. IEEE Trans. Electron. Dev. 54, 2849–2855 (2007).

    Article  ADS  Google Scholar 

  16. Bordel, D. et al. Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon (GeOI) substrate with high optical quality at room temperature in the 1.3 µm band. Appl. Phys. Lett. 96, 043101 (2010).

    Article  ADS  Google Scholar 

  17. Beanland, R. et al. Structural analysis of life tested 1.3 µm quantum dot lasers. J. Appl. Phys. 103, 014913 (2008).

    Article  ADS  Google Scholar 

  18. Bordel, D. et al. Growth of InAs/GaAs quantum dots on germanium-on-insulator-on-silicon substrate for silicon photonics. Physica E 42, 2765–2767 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  19. Banerjee, S., Halder, N. & Chakrabarti, S. Stranski–Krastanow growth of multilayer In(Ga)As/GaAs QDs on germanium substrate. Appl. Phys. A 99, 791–795 (2010).

    Article  ADS  Google Scholar 

  20. Dhawan, T. et al. Growth of InAs quantum dots on germanium substrate using metal organic chemical vapor deposition technique. Nanoscale Res. Lett. 5, 31–37 (2010).

    Article  ADS  Google Scholar 

  21. Sellers, I. R. et al. 1.3 µm InAs/GaAs multilayer quantum-dot laser with extremely low room-temperature threshold current density. Electron. Lett. 40, 1412–1413 (2004).

    Article  Google Scholar 

  22. Deppe, D. G., Shavritranuruk, K., Ozgur, G., Chen, H. & Freisem, S. Quantum dot laser diode with low threshold and low internal loss. Electron. Lett. 45, 54–55 (2009).

    Article  Google Scholar 

  23. Ustinov, V. M. & Zhukov, A. E. GaAs-based long-wavelength lasers. Semicond. Sci. Technol. 15, R41–R54 (2000).

    Article  ADS  Google Scholar 

  24. Jin, C. Y. et al. Observation and modelling of a room-temperature negative characteristic temperature 1.3-μm p-type modulation-doped quantum-dot laser. IEEE J. Quantum Electron. 42, 1259–1265 (2006).

    Article  ADS  Google Scholar 

  25. Technical Data Sheet: Germanium on Silicon (IQE Silicon Compounds Ltd, 2010), available at http://www.iqep.com/silicon/SiDatasheets/DatasheetGeOI.pdf

  26. Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679–681 (2010).

    Article  ADS  Google Scholar 

  27. Chriqui, Y. et al. Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defects density and observation of electroluminescence at room temperature under CW electrical injection. J. Crystal Growth 265, 53–59 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Royal Society and the Defense Science Technology Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and A.S. proposed and guided the overall project. H.L., T.W. and F.T. developed and performed material growth and characterization. T.W., Q.J., R.H., F.P. and A.S. were involved with device design, fabrication, measurement and assessment. All authors assisted with preparation of the manuscript and discussed the results.

Corresponding author

Correspondence to Huiyun Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Wang, T., Jiang, Q. et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nature Photon 5, 416–419 (2011). https://doi.org/10.1038/nphoton.2011.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing