Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent mixing of mechanical excitations in nano-optomechanical structures

Abstract

The combination of the large per-photon optical force and small motional mass achievable in nanocavity optomechanical systems results in strong dynamical back-action between mechanical motion and the cavity light field. In this Article, we study the optical control of mechanical motion within two different nanocavity structures, a zipper nanobeam photonic crystal cavity and a double-microdisk whispering-gallery resonator. The strong optical gradient force within these cavities is shown to introduce significant optical rigidity into the structure, with the dressed mechanical states renormalized into optically bright and optically dark modes of motion. With the addition of internal mechanical coupling between mechanical modes, a form of optically controlled mechanical transparency is demonstrated in analogy to electromagnetically induced transparency of three-level atomic media. Based upon these measurements, a proposal for coherently transferring radio-frequency/microwave signals between the optical field and a long-lived dark mechanical state is described.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the double-disk and zipper nano-optomechanical structures.
Figure 2: Optical renormalization of mechanical vibrations in the zipper cavity.
Figure 3: Coherent mechanical mode mixing in the double-disk cavity.
Figure 4: Illustration of the analogue to atomic and coupled-resonator systems.

Similar content being viewed by others

References

  1. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  ADS  Google Scholar 

  2. Harris, S. E., Field, J. E. & Imamoǧlu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990).

    Article  ADS  Google Scholar 

  3. Faist, J., Capasso, F., Sitori, C., West, K. W. & Pfeiffer, L. N. Controlling the sign of quantum interference by tunnelling from quantum wells. Nature 390, 589–591 (1997).

    Article  ADS  Google Scholar 

  4. Kroner, M. et al. The nonlinear Fano effect. Nature 451, 311–314 (2008).

    Article  ADS  Google Scholar 

  5. Scott, J. F. Soft-mode spectroscopy: experimental studies of structural phase transitions. Rev. Mod. Phys. 46, 83–128 (1974).

    Article  ADS  Google Scholar 

  6. Hase, M., Demsar, J. & Kitajima, M. Photoinduced fano resonance of coherent phonons in zinc. Phys. Rev. B 74, 212301 (2006).

    Article  ADS  Google Scholar 

  7. Harris, S. E. Lasers without inversion: interference of lifetime-broadened resonances. Phys. Rev. Lett. 62, 1033–1036 (1989).

    Article  ADS  Google Scholar 

  8. Nikonov, D. E., Imamoglu, A. & Scully, M. O. Lasers without inversion: interference of lifetime-broadened resonances. Phys. Rev. B 59, 12212–12215 (1999).

    Article  ADS  Google Scholar 

  9. Fan, S. Sharp asymmetric line shapes in side-coupled waveguide–cavity systems. Appl. Phys. Lett. 80, 908–910 (2002).

    Article  ADS  Google Scholar 

  10. Smith, D. D., Chang, H., Fuller, K. A., Rosenberger, A. T. & Boyd, R. W. Coupled-resonator-induced transparency. Phys. Rev. A 69, 063804 (2004).

    Article  ADS  Google Scholar 

  11. Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett. 96, 123901 (2006).

    Article  ADS  Google Scholar 

  12. Totsuka, K., Kobayashi, N. & Tomita, M. Coupled-resonator-induced transparency. Phys. Rev. Lett. 98, 213904 (2007).

    Article  ADS  Google Scholar 

  13. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nature Mater. 8, 758–762 (2009).

    Article  ADS  Google Scholar 

  14. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    Article  ADS  Google Scholar 

  15. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    Article  ADS  Google Scholar 

  16. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–73 (2006).

    Article  ADS  Google Scholar 

  17. Kleckner, D. & Bouwmeester, D. Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75–78 (2006).

    Article  ADS  Google Scholar 

  18. Schliesser, A., Del'Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    Article  ADS  Google Scholar 

  19. Povinelli, M. L. et al. Evanescent-wave bonding between optical waveguides. Opt. Lett. 30, 3042–3044 (2005).

    Article  ADS  Google Scholar 

  20. Eichenfield, M., Michael, C. P., Perahia, R. & Painter, O. Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nature Photon. 1, 416–422 (2007).

    Article  ADS  Google Scholar 

  21. Li, M. et al. Harnessing optical forces in integrated photonic cicruits. Nature 456, 480–484 (2008).

    Article  ADS  Google Scholar 

  22. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).

    Article  ADS  Google Scholar 

  23. Lin, Q., Rosenberg, J., Jiang, X., Vahala, K. J. & Painter, O. Mechanical oscillation and cooling actuated by optical gradient forces. Phys. Rev. Lett. 103, 103601 (2009).

    Article  ADS  Google Scholar 

  24. Rosenberg, J., Lin, Q., Vahala, K. J. & Painter, O. Static and dynamic wavelength routing via the gradient optical force. Nature Photon. 3, 478–483 (2009).

    Article  ADS  Google Scholar 

  25. Ashkin, A. Histroy of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J. Quantum Electron 6, 841–856 (2000).

    Article  Google Scholar 

  26. Braginskiı˘, V. B. & Manukin, A. B. Measurement of Weak Forces in Physics Experiments (University of Chicago Press, 1977).

  27. Braginskiı˘, V. B., Khalili, F. Y. & Thorne, K. S. Quantum Measurement (Cambridge Univ. Press, 1992).

  28. Sheard, B. S., Gray, M. B., Mow-Lowry, C. M., McClelland, D. E. & Whitcomb, S. E. Observation and characterization of an optical spring. Phys. Rev. A 69, 051801(R) (2004).

    Article  ADS  Google Scholar 

  29. Hossein-Zadeh, M. & Vahala, K. J. Observation of optical spring effect in a microtoroidal optomechanical resonator. Opt. Lett. 32, 1611–1613 (2007).

    Article  ADS  Google Scholar 

  30. Corbitt, T. et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007).

    Article  ADS  Google Scholar 

  31. Chan, J., Eichenfield, M., Camacho, R. & Painter, O. Optical and mechanical design of a ‘zipper’ photonic crystal optomechanical cavity. Opt. Express 17, 3802–3817 (2009).

    Article  ADS  Google Scholar 

  32. Bao, M. & Yang, H. Squeeze film air damping in MEMS. Sens. Actuators A 136, 3–27 (2007).

    Article  Google Scholar 

  33. Barker, A. S. Jr & Hopfield, J. J. Coupled-optical-phonon-mode theory of the infrared dispersion in BaTiO3, SiTiO3, and KTaO3. Phys. Rev. 135, A1732–A1737 (1964).

    Article  ADS  Google Scholar 

  34. Rousseau, D. L. & Porto, S. P. S. Auger-like resonant interference in Raman scattering from one- and two-phonon states of BaTiO3. Phys. Rev. Lett. 20, 1354–1357 (1968).

    Article  ADS  Google Scholar 

  35. Scott, J. F. Hybrid phonons and anharmonic interactions in AlPO4 . Phys. Rev. Lett. 24, 1107–1110 (1970).

    Article  ADS  Google Scholar 

  36. Zawadowski, A. & Ruvalds, J. Indirect coupling and antiresonance of two optic phonons. Phys. Rev. Lett. 24, 1111–1114 (1970).

    Article  ADS  Google Scholar 

  37. Chaves, A., Katiyar, R. S. & Porto, S. P. S. Coupled modes with a1 symmetry in tetragonal BaTiO3 . Phys. Rev. B 10, 3522–3533 (1974).

    Article  ADS  Google Scholar 

  38. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    Article  ADS  Google Scholar 

  39. Alzar, C. L. G., Martinez, M. A. G. & Nussenzveig, P. Classical analog of electromagnetically induced transparency. Am. J. Phys. 70, 37–41 (2002).

    Article  ADS  Google Scholar 

  40. Hemmer, P. R. & Prentiss, M. G. Coupled-pendulum model of the stimulated resonance Raman effect. J. Opt. Soc. Am. B 5, 1613–1623 (1988).

    Article  ADS  Google Scholar 

  41. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  42. Bajcsy, M., Zibrov, A. S. & Lukin, M. D. Stationary pulses of light in an atomic medium. Nature 426, 638–641 (2003).

    Article  ADS  Google Scholar 

  43. Yanik, F. M. & Fan, S. Stopping light all optically. Phys. Rev. Lett. 92, 083901 (2004).

    Article  ADS  Google Scholar 

  44. Yanik, F. M. & Fan, S. Stopping and storing light coherently. Phys. Rev. A 71, 013803 (2005).

    Article  ADS  Google Scholar 

  45. Anetsberger, G., Riviere, R., Schliesser, A., Arcizet, O. & Kippenberg, T. J. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  Google Scholar 

  46. Xu, Q., Dong, P. & Lipson, M. Breaking the delay-bandwidth limit in a photonic structure. Nature Phys. 3, 406–410 (2007).

    Article  ADS  Google Scholar 

  47. Verbridge, S. S., Craighead, H. G. & Parpia, J. M. A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92, 013112 (2008).

    Article  ADS  Google Scholar 

  48. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  49. Kippenberg, T. J., Kalkman, J., Polman, A. & Vahala, K. J. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74, 051802(R) (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Johnson and R. Perahia for their help with device processing, and T. Alegre for helpful discussions. This work was supported by the National Science Foundation (EMT grant no. 0622246 and CIAN grant no. EEC-0812072 through the University of Arizona) and through a seedling program from the Defense Advanced Research Projects Agency (grant no. HR0011-08-0002).

Author information

Authors and Affiliations

Authors

Contributions

Q.L., J.R., R.C. and M.E. performed the majority of the fabrication and testing of devices. Q.L., J.R. and D.C. performed the bulk of the analysis, along with optical and mechanical modelling. O.P. and K.J.V. contributed to the planning of the measurements. All authors worked together to write the manuscript.

Corresponding author

Correspondence to Oskar Painter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Q., Rosenberg, J., Chang, D. et al. Coherent mixing of mechanical excitations in nano-optomechanical structures. Nature Photon 4, 236–242 (2010). https://doi.org/10.1038/nphoton.2010.5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing