Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental measurement-based quantum computing beyond the cluster-state model

Abstract

The paradigm of measurement-based quantum computation opens new experimental avenues to realizing a quantum computer, and also deepens our understanding of quantum physics. Measurement-based quantum computation originates with a highly entangled universal resource state. For years, clusters states have been the only known universal resources. Surprisingly, a novel framework, namely quantum computation in correlation space, has opened a new route to implementing measurement-based quantum computation based on quantum states having entanglement properties, which differ from cluster states. Here, we report an experimental demonstration of every building block of such a model. With four-qubit and six-qubit states, which are not in the cluster-state category, we have realized a universal set of single-qubit rotations, two-qubit entangling gates and also Deutsch's algorithm. As well as being of fundamental interest, our experiment proves, in principle, the feasibility of universal measurement-based quantum computation without the use of cluster states, which represents a new approach towards the realization of a quantum computer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Entangled states and their corresponding circuits.
Figure 2: Experimental setup for generation of the four-qubit state |ψ4〉 and the six-qubit state |ψ6〉.
Figure 3: Success probability of single-qubit rotation and density matrices of the output states of the entangling two-qubit gate.
Figure 4: Theoretical design and experimental results of implementing Deutsch's algorithm.

Similar content being viewed by others

References

  1. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  2. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).

    Article  ADS  Google Scholar 

  3. Briegel, H. J., Browne, D. E., Dür, W, Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nature Phys. 5, 19–26 (2009).

    Article  Google Scholar 

  4. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  5. Kiesel, N. et al. Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005).

    Article  ADS  Google Scholar 

  6. Lu, C-Y. et al. Experimental entanglement of six photons in graph states. Nature Phys. 3, 91–95 (2007).

    Article  ADS  Google Scholar 

  7. Tokunaga, Y., Kuwashiro, S., Yamamoto, T., Koashi, M. & Imoto, N. Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. Phys. Rev. Lett. 100, 210501 (2008).

    Article  ADS  Google Scholar 

  8. Vallone, G., Pomarico, E., De Martini, F. & Mataloni, P. Active one-way quantum computation with two-photon four-qubit cluster states. Phys. Rev. Lett. 100, 160502 (2008).

    Article  ADS  Google Scholar 

  9. Hein, M. et al. in Quantum Computers, Algorithms and Chaos, Proceedings of the International School of Physics Enrico Fermi, Course CLXII (eds Casati, G., Shepelyansky, D. L., Zoller, P. & Benenti, G.) 115–218 (IOS Press, 2006).

  10. Gross, D. & Eisert, J. Novel schemes for measurement-based quantum computation. Phys. Rev. Lett. 98, 220503 (2007).

    Article  ADS  Google Scholar 

  11. Gross, D. et al. Measurement-based quantum computation beyond the one-way model. Phys. Rev. A 76, 052315 (2007).

    Article  ADS  Google Scholar 

  12. Gross, D. & Eisert, J. Quantum computational webs. http://arxiv.org/abs/0810.2542 (2010).

  13. Vaucher, B., Nunnenkamp, A. & Jaksch, D. Creation of resilient entangled states and a resource for measurement-based quantum computation with optical superlattices. New J. Phys. 10, 023005 (2008).

    Article  ADS  Google Scholar 

  14. Brennen, G. K. & Miyake, A. Measurement-based quantum computer in the gapped ground state of a two-body Hamiltonian. Phys. Rev. Lett. 101, 010502 (2008).

    Article  ADS  Google Scholar 

  15. Eisert, J. Optimizing linear optics quantum gates. Phys. Rev. Lett. 95, 040502 (2005).

    Article  ADS  Google Scholar 

  16. Kieling, K., O'Brien, J. L. & Eisert, J. On photonic controlled phase gates. New J. Phys. 12, 013003 (2010).

    Article  ADS  Google Scholar 

  17. Lemr, K. et al. Experimental implementation of the optimal linear-optical controlled phase gate. http://arxiv.org/abs/1007.4797 (2010).

  18. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. Y. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  19. Politi, A., Matthews, J. C. F. & O' Brien, J. L. Shor's quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  20. Matthews, J. C. F., Politi, A., Stefanov, A. & O'Brien, J. L. Manipulating multi-photon entanglement in waveguide quantum circuits. Nature Photon. 3, 346–350 (2009).

    Article  ADS  Google Scholar 

  21. Verstraete, F. & Cirac, J. I. Valence-bond states for quantum computation. Phys. Rev. A 70, 060302 (2004).

    Article  ADS  Google Scholar 

  22. Nielsen, M. A. Cluster-state quantum computation. Rep. Math. Phys. 57, 147–161 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  23. Bartlett, S. D. & Rudolph, T. Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation. Phys. Rev. A 74, 040302 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  24. Chen, X., Zeng, B., Gu, Z-C., Yoshida, B. & Chuang, I. L. Gapped two-body Hamiltonian whose unique ground state is universal for one-way quantum computation. Phys. Rev. Lett. 102, 220501 (2009).

    Article  ADS  Google Scholar 

  25. Van den Nest, M. et al. Universal resources for measurement-based quantum computation. Phys. Rev. Lett. 97, 150504 (2006).

    Article  ADS  Google Scholar 

  26. Gross, D., Flammia, S. T. & Eisert, J. Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  27. Bremner, M., Mora, C. & Winter, A. Are random pure states useful for quantum computation? Phys. Rev. Lett. 102, 190502 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  28. Cai, J.-M., Dür, W., Van den Nest, M., Miyake, A. & Briegel, H. J. Quantum computation in correlation space and extremal entanglement. Phys. Rev. Lett. 103, 050503 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  29. Fannes, M., Nachtergaele, B. & Werner, R. F. Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  30. Perez-Garcia, D., Verstraete, F., Wolf, M. M. & Cirac, J. I. Matrix product state representations. Quantum. Inf. Comput. 7, 401–430 (2007).

    MathSciNet  MATH  Google Scholar 

  31. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  32. Ralph, T. C., Langford, N. K., Bell, T. B. & White, A. G. Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324 (2002).

    Article  ADS  Google Scholar 

  33. Hofmann, H. F. & Takeuchi, S. Quantum phase gate for photonic qubits using only beam splitters and postselection. Phys. Rev. A 66, 024308 (2002).

    Article  ADS  Google Scholar 

  34. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    Article  ADS  Google Scholar 

  35. Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).

    Article  ADS  Google Scholar 

  36. Kiesel, N. et al. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005).

    Article  ADS  Google Scholar 

  37. Okamoto, R., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Demonstration of an optical quantum controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005).

    Article  ADS  Google Scholar 

  38. Gao, W. B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010).

    Article  ADS  Google Scholar 

  39. Kalasuwan, P. et al. A simple scheme for expanding photonic cluster states for quantum information. J. Opt. Soc. Am. B 27, A181–A184 (2010).

    Article  Google Scholar 

  40. Gisin, N. & Massar, S. Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153–2156 (1997).

    Article  ADS  Google Scholar 

  41. Mohseni, M. et al. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003).

    Article  ADS  Google Scholar 

  42. Tame, M. S. et al. Experimental realization of Deutsch's algorithm in a one-way quantum computer. Phys. Rev. Lett. 98, 140501 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  43. Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. Roy. Soc. Lond. A 439, 553–558 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  44. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    Article  ADS  Google Scholar 

  45. Wei., Z.-H., Han, Y.-J., Oh, C. H. & Duan, L.-M. Improving noise threshold for optical quantum computing with the EPR photon source. Phys. Rev. A 81, 060301 (2010).

    Article  ADS  Google Scholar 

  46. Gross, D., Kieling, K. & Eisert, J. Potential and limits to cluster-state quantum computing using probabilistic gates. Phys. Rev. A 74, 042343 (2006).

    Article  ADS  Google Scholar 

  47. Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank H.J. Briegel for valuable suggestions and J. Eisert for helpful discussions. This work is supported by the National Natural Science Foundation (NNSF) of China, the Chinese Academy of Sciences (CAS), the National Fundamental Research Program (under grant no. 2006CB921900), and the Fundamental Research Funds for the Central Universities. The research at Innsbruck is supported by the Austrian Science Fund (FWF) (J.-M.C. through the Lise Meitner Program, Special Research Area-Foundations and Applications of Quantum Science (SFB-FoQuS)).

Author information

Authors and Affiliations

Authors

Contributions

W.-B.G., J.-M.C., Z.-B.C. and J.-W.P. conceived the research. W.-B.G., X.-C.Y., H.L., P.X., T.Y., C.-Y.L. and Y.-A.C. carried out the experiment. W.-B.G., X.-C.Y., J.-M.C., H.L. and P.X. analysed the data. W.-B.G., J.-M.C., C.-Y.L. Y.-A.C. and J.-W.P. wrote the paper. J.-W.P. and Z.-B.C. supervised the entire project.

Corresponding authors

Correspondence to Zeng-Bing Chen or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, WB., Yao, XC., Cai, JM. et al. Experimental measurement-based quantum computing beyond the cluster-state model. Nature Photon 5, 117–123 (2011). https://doi.org/10.1038/nphoton.2010.283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing