Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

From quantum multiplexing to high-performance quantum networking

Abstract

Quantum repeaters will be critical to quantum communication and quantum computation. Here, we describe a mechanism that permits the creation of entanglement between two qubits, connected by fibre, with probability arbitrarily close to one and in constant time. We show how this mechanism may be extended to ensure that the entanglement has high fidelity without compromising these properties. Finally, we describe how it may be used to construct a quantum repeater that is capable of creating a linear quantum network connecting two distant qubits with high fidelity. The communication rate is shown to be a function of the maximum distance between any two adjacent quantum repeaters rather than of the entire length of the network.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of a quantum repeater node and its link to its nearest neighbour.
Figure 2: Schematic of a quantum circuit for performing one-way error correction on imperfect links.
Figure 3: Quasi-asynchronous repeater network.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. Spiller, T. P., Munro, W. J., Barrett, S. D. & Kok, P. An introduction to quantum information processing: applications and realizations. Contemp. Phys. 46, 407–436 (2005).

    Article  ADS  Google Scholar 

  3. Dowling, J. P. & Milburn, G. J. Quantum technology: the second quantum revolution. Preprint at http://arxiv.org/abs/quant-ph/0206091 (2002).

  4. Spiller, T. P. & Munro, W. J. Towards a quantum information technology industry. J. Phys.: Condens. Matter 18, 1–10 (2006).

    Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  6. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  7. Dür, W., Briegel, H.-J., Cirac, J. I. & Zoller, P. Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169–181 (1999).

    Article  ADS  Google Scholar 

  8. Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Preprint at http://arxiv.org/abs/0906.2699 (2009) and references within.

  9. Van Loock, P. et al. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006).

    Article  ADS  Google Scholar 

  10. Ladd, T. D., van Loock P., Nemoto K., Munro W. J. & Yamamoto Y. Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light, New J. Phys. 8, 184 (2006).

    Article  ADS  Google Scholar 

  11. Munro, W. J., Van Meter, R., Louis, S. G. R. & Nemoto, K. High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008).

    Article  ADS  Google Scholar 

  12. Van Meter R., Ladd T. D., Munro W. J. & Nemoto K., System design for a long-line quantum Repeater. IEEE/ACM Transactions on Networking 17, 1002–1013 (2009).

    Article  Google Scholar 

  13. Childress, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006).

    Article  ADS  Google Scholar 

  14. Enk, S. J., Cirac, J. I. & Zoller, P. Photonic channels for quantum communication. Science 279, 205–208 (1998).

    Article  ADS  Google Scholar 

  15. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  16. Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

    Article  ADS  Google Scholar 

  17. Yuan, Z. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    Article  ADS  Google Scholar 

  18. Goebel, A. M. et al. Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008).

    Article  ADS  Google Scholar 

  19. Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett 98, 190503 (2007).

    Article  ADS  Google Scholar 

  20. Tittel, W. et al. Photon-echo quantum memory in solid state systems. Laser Photon. Rev. 4, 244–267 (2009).

    Article  ADS  Google Scholar 

  21. Sangouard, N., Dubessy, R. & Simon, C. Quantum repeaters based on single trapped ions. Phys. Rev. A 79, 042340 (2009).

    Article  ADS  Google Scholar 

  22. Dür, W. & Briegel, H. J. Entanglement purification and quantum error correction. Rep. Prog. Phys. 70, 1381–1424 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  23. Pan, J.-W., Simon, S., Brukner, C. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001).

    Article  ADS  Google Scholar 

  24. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  25. Collins, O. A., Jenkins, S. D., Kuzmich, A. & Kennedy, T. A. Multiplexed memory-insensitive quantum repeaters. Phys. Rev. Lett. 98, 060502 (2007).

    Article  ADS  Google Scholar 

  26. Gottesman, D. An introduction to quantum error correction and fault-tolerant quantum computation. Preprint at http://arxiv.org/abs/0904.2557 (2009).

  27. Devitt, S. J., Nemoto, K. & Munro, W. J. The idiots guide to quantum error correction. Preprint at http://arxiv.org/abs/0905.2794 (2009).

  28. Jiang, L. et al. Quantum repeater with encoding. Phys. Rev A 79, 032325 (2009).

    Article  ADS  Google Scholar 

  29. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  30. Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).

    Article  ADS  Google Scholar 

  31. Steane, A. M. Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  32. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    Article  ADS  Google Scholar 

  33. Fowler, A. G. et al. Surface code quantum communication. Phys. Rev. Lett. 104, 180503 (2010).

    Article  ADS  Google Scholar 

  34. Perseguers, S. et al. One-shot entanglement generation over long distances in noisy quantum networks. Phys. Rev. A 78, 062324 (2008).

    Article  ADS  Google Scholar 

  35. Perseguers, S. Fidelity threshold for long-range entanglement in quantum networks. Phys. Rev. A 81, 012310 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  36. Bacon, D. Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A 73, 012340 (2006).

    Article  ADS  Google Scholar 

  37. Jiang, L., Taylor, J. M. & Lukin, M. D. Fast and robust approach to long-distance quantum communication with atomic ensembles. Phys. Rev. A 76, 012301 (2007).

    Article  ADS  Google Scholar 

  38. Aliferis, P. & Cross, A. W. Subsystem fault tolerance with the Bacon-Shor code. Phys. Rev. Lett. 98, 220502 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by European Union seventh framework projects Hybrid Information Processing (HIP), Quantum Interfaces, Sensors, and Communication based on Entanglement (Q-ESSENCE), a Hewlett Packard Laboratories Innovation Research Grant and Japanese grants from the Specially Promoted Research in Grants-in-Aid for Scientific Research funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the National Institute of Information and Communications Technology (NICT) and the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST).

Author information

Authors and Affiliations

Authors

Contributions

W.J.M., K.A.H. and K.N. conceived the original entanglement-distribution concept. All authors contributed to the final design of the network. W.J.M. and A.M.S. prepared the manuscript with input from S.J.D., K.A.H. and K.N.

Corresponding author

Correspondence to W. J. Munro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munro, W., Harrison, K., Stephens, A. et al. From quantum multiplexing to high-performance quantum networking. Nature Photon 4, 792–796 (2010). https://doi.org/10.1038/nphoton.2010.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing