Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Time-of-flight measurement with femtosecond light pulses

Abstract

The time-of-flight of light pulses has long been used as a direct measure of distance1,2, but state-of-the-art measurement precision using conventional light pulses or microwaves peaks at only several hundreds of micrometres3,4. Here, we improve the time-of-flight precision to the nanometre regime by timing femtosecond pulses through phase-locking control of the pulse repetition rate using the optical cross-correlation technique5,6. Our experiment shows an Allan deviation of 117 nm in measuring a 0.7-km distance in air at a sampling rate of 5 ms once the pulse repetition is phase-locked, which reduces to 7 nm as the averaging time increases to 1 s. This enhanced capability is maintained at long range without periodic ambiguity, and is well suited to lidar applications such as geodetic surveying7, range finders8 and absolute altimeters9. This method could also be applied to future space missions involving formation-flying satellites for synthetic aperture imaging10,11 and remote experiments related to general relativity theory12.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-of-flight measurement of femtosecond light pulses.
Figure 2: Balanced cross-correlation signal.
Figure 3: Demonstration of long-distance measurement.
Figure 4: Evaluation of measurement precision.

Similar content being viewed by others

References

  1. Smullin, L. D. & Fiocco, G. Optical echoes from the moon. Nature 194, 1267 (1962).

    Article  ADS  Google Scholar 

  2. Bender, P. L. et al. The lunar laser ranging experiment: accurate ranges have given a large improvement in the lunar orbit and new selenophysical information. Science 182, 229–238 (1973).

    Article  ADS  Google Scholar 

  3. Dickey, J. O. et al. Lunar laser ranging: a continuing legacy of the Apollo program. Science 265, 482–490 (1994).

    Article  ADS  Google Scholar 

  4. Pellegrin, S., Buller, G. S., Smith, J. M., Wallace, A. M. & Cova, S. Laser-based distance measurement using picosecond resolution time-correlated single-photon counting. Meas. Sci. Technol. 11, 712–716 (2000).

    Article  ADS  Google Scholar 

  5. Kim, J. et al. Long-term femtosecond timing link stabilization using a single-crystal balanced cross correlator. Opt. Lett. 32, 1044–1046 (2007).

    Article  ADS  Google Scholar 

  6. Kim, J., Cox, J. A., Chen, J. & Kärtner, F. X. Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nature Photon. 2, 733–736 (2008).

    Article  ADS  Google Scholar 

  7. Pritchard, M. E. & Simons, M. A. Satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418, 167–171 (2002).

    Article  ADS  Google Scholar 

  8. Yeomans, D. K. et al. Radio science results during the NEAR–Shoemaker spacecraft rendezvous with Eros. Science 289, 2085–2088 (2000).

    Article  ADS  Google Scholar 

  9. Smith, D. E., Zuber, M. T. & Neumann, G. A. Seasonal variations of snow depth on Mars. Science 294, 2141–2146 (2001).

    Article  ADS  Google Scholar 

  10. White, N. X-ray astronomy — imaging black holes. Nature 407, 146–147 (2000).

    Article  ADS  Google Scholar 

  11. Lawson, P. R. & Dooley, J. A. Technology plan for the terrestrial planet finder interferometer. Publ. Jet Propulsion Laboratory 05–5, 1–149 (2005).

    Google Scholar 

  12. Seto, N., Kawamura, S. & Nakamura, T. Possibility of direct measurement of the acceleration of the universe using 0.1 Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001).

    Article  ADS  Google Scholar 

  13. Kim, S.-W. Combs rule. Nature Photon. 3, 313–314 (2009).

    Article  ADS  Google Scholar 

  14. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  15. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  Google Scholar 

  16. Jin, J., Kim, Y.-J., Kim, Y. & Kim, S.-W. Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser. Opt. Express 14, 5968–5974 (2006).

    Article  ADS  Google Scholar 

  17. Hyun, S., Kim, Y.-J., Kim, Y., Jin, J. & Kim, S.-W. Absolute length measurement with the frequency comb of a femtosecond laser. Meas. Sci. Technol. 20, 095302 (2009).

    Article  ADS  Google Scholar 

  18. Schuhler, N., Salvade, Y., Leveque, S., Dandliker, R. & Holzwarth, R. Frequency comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett. 31, 3101–3103 (2006).

    Article  ADS  Google Scholar 

  19. Schibli, T. R. et al. Displacement metrology with sub-pm resolution in air based on a fs-comb wavelength synthesizer. Opt. Express 14, 5984–5993 (2006).

    Article  ADS  Google Scholar 

  20. Minoshima, K. & Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 39, 5512–5517 (2000).

    Article  ADS  Google Scholar 

  21. Ye, J. Absolute measurement of long, arbitrary distance to less than an optical fringe. Opt. Lett. 29, 1153–1155 (2004).

    Article  ADS  Google Scholar 

  22. Cui, M., Schouten, R. N., Bhattacharya, N. & van den Berg, S. A. Experimental demonstration of distance measurement with a femtosecond frequency comb laser. J. Eur. Opt. Soc. Rapid Publ. 3, 08003 (2008).

    Article  Google Scholar 

  23. Joo, K.-N. & Kim, S.-W. Absolute distance measurement by dispersive interferometry using a femotsecond pulse laser. Opt. Express 14, 5954–5960 (2006).

    Article  ADS  Google Scholar 

  24. Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nature Photon. 3, 351–356 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jungwon Kim for the discussions and suggestions on the optical cross-correlation technique he provided during the experimental work. This work was funded by the National Research Foundation of the Republic of Korea through the Creative Research Initiatives Program and the National Space Laboratory Program.

Author information

Authors and Affiliations

Authors

Contributions

The project was planned by S.-W.K, Y.-J.K. and J.L. The experiments were performed by J.L., K.L., S.L. and Y.-J.K.

Corresponding author

Correspondence to Seung-Woo Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kim, YJ., Lee, K. et al. Time-of-flight measurement with femtosecond light pulses. Nature Photon 4, 716–720 (2010). https://doi.org/10.1038/nphoton.2010.175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing