Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength

Abstract

We have implemented non-Gaussian operation in pulsed squeezed vacuum at a telecommunications wavelength. A one- or two-photon-subtracted squeezed state was generated using a titanium superconducting transition-edge sensor to resolve the incident photon number. We observed dips in the reconstructed Wigner functions of the generated quantum states, which provides clear evidence that non-Gaussian operation has been realized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Measured Wigner functions and quadrature distributions.
Figure 3: Numerically calculated Wigner functions W(x,p) with different modal purities and overall efficiencies.

Similar content being viewed by others

References

  1. Shannon, C. E. A mathematical theory of communication. Bell System Tech. J. 27, 379–423 (Part I) and 623–656 (Part II) (1948).

    Article  MathSciNet  Google Scholar 

  2. Holevo, A. S. The capacity of quantum channel with general signal states. IEEE Trans. Inform. Theory 44, 269–273 (1998).

    Article  MathSciNet  Google Scholar 

  3. Schumacher, B. & Westmoreland, M. D. Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131–138 (1997).

    Article  ADS  Google Scholar 

  4. Giovannetti, V., Guha, S., Lloyd, S., Maccone, L., Shapiro, J. H. & Yuan, H. P. Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004).

    Article  ADS  Google Scholar 

  5. Fiuŕǎsek, J. Gaussian transformations and distillation of entangled Gaussian states. Phys. Rev. Lett. 89, 137904 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  6. Eisert, J., Scheel, S. & Plenio, M. B. Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  7. Giedke, G. & Cirac, J. I. Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 66, 032316 (2002).

    Article  ADS  Google Scholar 

  8. Lloyd, S. & Braunstein, S. L. Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  10. Wenger, J., Brouri, R. T. & Grangier, P. Non-Gaussian statistics from individual pulses of squeezed light. Phys. Rev. Lett. 92, 153601 (2004).

    Article  ADS  Google Scholar 

  11. Ourjoumtsev, A., Brouri, R. T., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing Science 312, 83–86 (2006).

  12. Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).

    Article  ADS  Google Scholar 

  13. Wakui, K., Takahashi, H., Furusawa, A. & Sasaki, M. Photon subtracted squeezed states generated with periodically poled KTiOPO4 . Opt. Express 15, 3568–3574 (2007).

    Article  ADS  Google Scholar 

  14. Miller, A. J., Nam, S. W., Martinis, J. M. & Sergienko, A. V. Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 793–795 (2003).

    ADS  Google Scholar 

  15. Fukuda, D. et al. High speed photon number resolving detector with titanium transition edge sensor. J. Low Temp. Phys. 151, 100–105 (2008).

    Article  ADS  Google Scholar 

  16. Achilles, D. et al. Photon-number-resolving detection using time-multiplexing. J. Mod. Opt. 51, 1499–1515 (2004).

    Article  ADS  Google Scholar 

  17. Fukuda, D. et al. Photon number resolving detection with high speed and high quantum efficiency. Metrologia 46, S288 (2009).

    Article  Google Scholar 

  18. Kurimura, S., Kato, Y., Maruyama, M., Usui, Y. & Nakajima, H. Quasi-phase-matched adhered ridge waveguide in LiNbO3 . Appl. Phys. Lett. 89, 191123 (2006).

    Article  ADS  Google Scholar 

  19. Anderson, M. E., Beck, M., Raymer, M. G. & Bierlein, J. D. Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides. Opt. Lett. 20, 620–622 (1995).

    Article  ADS  Google Scholar 

  20. Eto, Y., Tajima, T., Zhang, Y. & Hirano, T. Observation of squeezed light at 1.535 µm using a pulsed homodyne detector. Opt. Lett. 32, 1698–1700 (2007).

    Article  ADS  Google Scholar 

  21. Namekata, N., Makino, Y. & Inoue, S. Single-photon detector for long-distance fiber-optic quantum key distribution. Opt. Lett. 27, 954–956 (2002).

    Article  ADS  Google Scholar 

  22. Hansen, H. et al. Ultrasensitive pulsed, balanced homodyne detector: application to time-domain quantum measurements. Opt. Lett. 26, 1714–1716 (2001).

    Article  ADS  Google Scholar 

  23. Appel, J., Hoffman, D., Figueroa, E. & Lvovsky, A. I. Electronic noise in optical homodyne tomography. Phys. Rev. A 75, 035802 (2007).

    Article  ADS  Google Scholar 

  24. Lvovsky A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B 6, S556–S559 (2004).

    Article  ADS  Google Scholar 

  25. Kenfack, A. & Życzkowski, K. Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B 6, 396–404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. Eto, Y., Tajima, T., Zhang, Y. & Hirano, T. Observation of quadrature squeezing in a χ2 nonlinear waveguide using a temporally shaped local oscillator pulse. Opt. Express 16, 10650–16657 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Itatani for providing support regarding TES device fabrication. This research was supported by National Institute of Information and Communication Technology (NICT).

Author information

Authors and Affiliations

Authors

Contributions

N.N. and Y.T. contributed equally as first authors. N.N. and Y.T. performed the experiments and analysed the data. G.F. and D.F. fabricated the photon-number-resolving detector based on the Ti-TES. S.K. fabricated the periodically poled lithium niobate adhered-ridge waveguide. S.I. supervised the project. N.N., Y.T. and S.I. contributed to writing the paper.

Corresponding author

Correspondence to Naoto Namekata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namekata, N., Takahashi, Y., Fujii, G. et al. Non-Gaussian operation based on photon subtraction using a photon-number-resolving detector at a telecommunications wavelength. Nature Photon 4, 655–660 (2010). https://doi.org/10.1038/nphoton.2010.158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing