Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect

Abstract

The ability to probe quantum systems on short timescales is central to the advancement of quantum technology. Here we show that this is possible using an off-resonant dispersive probe. By applying a magnetic field to an atomic vapour the spectra of the group index for left and right circularly polarized light become displaced, leading to a slow-light Faraday effect that results in large dispersion and high transmission over tens of gigahertz. This large frequency range opens up the possibility of probing dynamics on a nanosecond timescale. In addition, we show that the group index enhances the spectral sensitivity of the polarization rotation, giving large rotations of up to 15π rad for continuous-wave light. Finally, we demonstrate dynamic broadband pulse switching by rotating a linearly polarized nanosecond pulse by π/2 rad with negligible distortion and transmission close to unity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the Faraday effect for pulsed light.
Figure 2: Schematic of the experimental apparatus.
Figure 3: Optical pulse propagation in a slow-light medium.
Figure 4: Continuous-wave propagation in a slow-light medium.
Figure 5: Determination of relative phase and refractive indices using a c.w. beam.
Figure 6: Broadband Faraday rotation in a slow-light medium.

Similar content being viewed by others

References

  1. Krauss, T. F. Why do we need slow light? Nature Photon. 2, 448–450 (2008).

    Article  ADS  Google Scholar 

  2. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  3. Vanner, M. R., McLean, R. J., Hannaford, P. & Akulshin, A. M. Broadband optical delay with a large dynamic range using atomic dispersion. J. Phys. B 41, 051004 (2008).

    Article  ADS  Google Scholar 

  4. Camacho, R. M., Pack, M. V., Howell, J. C., Schweinsberg, A. & Boyd, R. W. Wide-bandwidth, tunable, multiple-pulse-width optical delays using slow light in Cesium vapor. Phys. Rev. Lett. 98, 153601 (2007).

    Article  ADS  Google Scholar 

  5. Tanaka, H. et al. Propagation of optical pulses in a resonantly absorbing medium: observation of negative velocity in Rb vapor. Phys. Rev. A 68, 053801 (2003).

    Article  ADS  Google Scholar 

  6. Gauthier, D. J., Gaeta, A. L. & Boyd, R. W. Slow light: from basics to future prospects. Photon. Spectra 40, 44–50 (2006).

    Google Scholar 

  7. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  Google Scholar 

  8. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  Google Scholar 

  9. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  10. Shi, Z., Boyd, R. W., Gauthier, D. J. & Dudley, C. C. Enhancing the spectral sensitivity of interferometers using slow-light media. Opt. Lett. 32, 915–917 (2007).

    Article  ADS  Google Scholar 

  11. Purves, G. T., Adams, C. S. & Hughes, I. G. Sagnac interferometry in a slow-light medium. Phys. Rev. A 74, 023805 (2006).

    Article  ADS  Google Scholar 

  12. Shi, Z., Boyd, R. W., Camacho, R. M., Vudyasetu, P. K. & Howell, J. C. Slow-light fourier transform interferometer. Phys. Rev. Lett. 99, 240801 (2007).

    Article  ADS  Google Scholar 

  13. Urban, E. et al. Observation of Rydberg blockade between two atoms. Nature Phys. 5, 110–114 (2009).

    Article  ADS  Google Scholar 

  14. Gae¨tan, A. et al. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nature Phys. 5, 115–118 (2009).

    Article  ADS  Google Scholar 

  15. Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)

    Article  ADS  Google Scholar 

  16. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    Article  ADS  Google Scholar 

  17. Budker, D. et al. Resonant nonlinear magneto-optical effects in atoms. Rev. Mod. Phys. 74, 1153–1201 (2002).

    Article  ADS  Google Scholar 

  18. Awschalom, D. D. & Kikkawa, J. M. Electron spin and optical coherence in semiconductors. Phys. Today 52, 33–38 (1999).

    Article  Google Scholar 

  19. Atatu¨re, M., Dreiser, J., Badolato, A. & Imamoglu A. Observation of Faraday rotation from a single confined spin. Nature Phys. 3, 101–106 (2007).

    Article  ADS  Google Scholar 

  20. Menders, J., Benson, K., Bloom, S. H., Liu, C. S. & Krevaar, E. Ultranarrow line filtering using a Cs Faraday filter at 852 nm. Opt. Lett. 16, 846–848 (1991).

    Article  ADS  Google Scholar 

  21. Grischkowsky, D. Adiabatic following and slow optical pulse propagation in rubidium vapor. Phys. Rev. A 7, 2096–2103 (1973).

    Article  ADS  Google Scholar 

  22. Siddons, P., Adams, C. S., Ge, C. & Hughes, I. G. Absolute absorption on rubidium D lines: comparison between theory and experiment. J. Phys. B 41, 155004 (2008).

    Article  ADS  Google Scholar 

  23. Kahla, S. & Grishin, A. M. Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal. Appl. Phys. Lett. 84, 1438–1440 (2004).

    Article  ADS  Google Scholar 

  24. Pearman, C. P. et al. Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking. J. Phys. B. 35, 5141–5151 (2002).

    Article  ADS  Google Scholar 

  25. Mohapatra, A. K., Jackson, T. R. & Adams, C. S. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007).

    Article  ADS  Google Scholar 

  26. Mohapatra, A. K., Bason, M. G., Butscher, B., Weatherill, K. J. & Adams, C. S. A giant electro-optic effect using polarizable dark states. Nature Phys. 4, 890–894 (2008).

    Article  ADS  Google Scholar 

  27. Mauger, S., Millen, J. & Jones, M.P.A. Spectroscopy of strontium Rydberg states using electromagnetically induced transparency. J. Phys. B 40, F319–F325 (2007).

    Article  ADS  Google Scholar 

  28. Gibbs H. M., Churchill, G. G. & Salamo, G. J. Faraday rotation under cw saturation and self-induced transparency conditions. Opt. Commun. 12, 396–399 (1974).

    Article  ADS  Google Scholar 

  29. Hammerer, K., Sorensen, A. S. & Polzik, E. S. Quantum interface between light and atomic ensembles. arXiv:0807.3358v2 [quant-ph] (2008).

  30. Boyd, R. W. Nonlinear Optics, 3rd edn (Academic Press, 2008).

    Google Scholar 

  31. Huard, S. Polarization of Light (Wiley, 1997).

    Google Scholar 

  32. McCarron, D. J., Hughes, I. G., Tierney, P. & Cornish, S. L. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium. Rev. Sci. Instrum. 78, 093106 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank M.P.A. Jones for valuable discussion. This work was funded by the Engineering and Physical Sciences Research Council (EPSRC).

Author information

Authors and Affiliations

Authors

Contributions

P.S. carried out the experiment and theoretical modelling, and contributed to the writing of the paper. N.C.B. and Y.C. assisted with the experiment. C.S.A. and I.G.H contributed to the writing of the paper and were responsible for project management.

Corresponding author

Correspondence to Paul Siddons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddons, P., Bell, N., Cai, Y. et al. A gigahertz-bandwidth atomic probe based on the slow-light Faraday effect. Nature Photon 3, 225–229 (2009). https://doi.org/10.1038/nphoton.2009.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing