Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A bright future for quantum communications

Quantum information protocols based on continuous-variable entangled states are attractive because they exploit standard optical modulation and measurement equipment, and do not require single photons. Recent progress in the field is reversing initial concerns about the practicality of the approach.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A continuous-variable optical quantum information experiment at the Australian National University.
Figure 2: Typical schematic of a coherent-state quantum key distribution system.
Figure 3: Phase-space diagrams showing the sending of a quantum state from Alice to Bob.

References

  1. Bennett, C. H. & Brassard, G. in Proc. IEEE Int. Conf. Computers, Systems and SignalProcessing 175–179 (IEEE, 1984).

    Google Scholar 

  2. Braunstein, S. L. & van Loock, P. Rev. Mod. Phys. 77, 513–577 (2005).

    Article  ADS  Google Scholar 

  3. Bennett, C. H. et al. Phys. Rev. Lett. 70, 1895–1899 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  4. Vaidman, L. Phys. Rev. A 49, 1473–1476 (1994).

    Article  ADS  Google Scholar 

  5. Braunstein, S. L. & Kimble, H. J. Phys. Rev. Lett. 80, 869–872 (1998).

    Article  ADS  Google Scholar 

  6. Walls, D. F. & Milburn, G. J. Quantum Optics (Springer, 1994).

    Book  Google Scholar 

  7. Furusawa, A. et al. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  8. Bowen, W. P. et al. Phys. Rev. A 67, 032302 (2003).

    Article  ADS  Google Scholar 

  9. Takei, N., Yonezawa, H., Aoki, T. & Furusawa, A. Phys. Rev. Lett. 94, 220502 (2005).

    Article  ADS  Google Scholar 

  10. Gottesman, D. & Chuang, I. L. Nature 402, 390–393 (1999).

    ADS  Google Scholar 

  11. Raussendorf, R. & Briegel, H. J. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS  Google Scholar 

  12. Menicucci, N. C. et al. Phys. Rev. Lett. 97, 110501 (2006).

    Article  ADS  Google Scholar 

  13. Yukawa, M., Ukai, R., van Loock, P. & Furusawa A. Phys. Rev. A 78, 012301 (2008).

    Article  ADS  Google Scholar 

  14. Bachor, H-A. & Ralph, T. C. A Guide to Experiments in Quantum Optics 2nd edn (Wiley-VCH, 2004).

    Book  Google Scholar 

  15. Ralph, T. C. Phys. Rev. A 61, 010303 (1999).

    Article  Google Scholar 

  16. Cerf, N. J., Lévy, M. & Van Assche, G. Phys. Rev. A 63, 052311 (2001).

    Article  ADS  Google Scholar 

  17. Grosshans, F. & Grangier, P. Phys. Rev. Lett. 88, 057902 (2002).

    Article  ADS  Google Scholar 

  18. Reid, M. D. Phys. Rev. A 62, 062308 (2000).

    Article  ADS  Google Scholar 

  19. Grosshans, F. et al. Nature 421, 238–241 (2003).

    Article  ADS  Google Scholar 

  20. Silberhorn, C., Ralph, T. C., Lütkenhaus, N. & Leuchs, G. Phys. Rev. Lett. 89, 167901 (2002).

    Article  ADS  Google Scholar 

  21. Lance, A. M. et al. Phys. Rev. Lett. 95, 180503 (2005).

    Article  ADS  Google Scholar 

  22. Leverrier, A. & Grangier, P. Phys. Rev. Lett. 102, 180504 (2009).

    Article  ADS  Google Scholar 

  23. Eisert, J., Scheel, S. & Plenio, M. B. Phys. Rev. Lett. 89, 137903 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  24. Niset, J., Fiurášek, J. & Cerf, N. J. Phys. Rev. Lett. 102, 120501 (2009).

    Article  ADS  Google Scholar 

  25. Bartlett, S. D., Sanders, B. C., Braunstein, S. L. & Nemoto, K. Phys. Rev. Lett. 88, 097904 (2002).

    Article  ADS  Google Scholar 

  26. Browne, D. E., Eisert, J., Scheel, S. & Plenio, M. B. Phys. Rev. A 67, 062320 (2003).

    Article  ADS  Google Scholar 

  27. Gottesman, D., Kitaev, A. & Preskill, J. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  28. Lvovsky, A. I. et al. Phys. Rev. Lett. 87, 050402 (2001).

    Article  ADS  Google Scholar 

  29. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Science 312, 83–86 (2006).

    Article  ADS  Google Scholar 

  30. Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Phys. Rev. Lett. 97, 083604 (2006).

    Article  ADS  Google Scholar 

  31. Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Nature 448, 784–786 (2007).

    Article  ADS  Google Scholar 

  32. Takahashi, H. et al. Phys. Rev. Lett. 101, 233605 (2008)

    Article  ADS  Google Scholar 

  33. Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Phys. Rev. Lett. 100, 030503 (2009).

    Article  Google Scholar 

  34. Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. & Grangier, P. Nature Phys. 5, 189–192 (2009).

    Article  ADS  Google Scholar 

  35. Takahashi, H. et al. Preprint at http://arxiv.org/abs/0907.2159 (2009).

  36. Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N. & Pryde, G. J. Preprint at http://arxiv.org/abs/0907.3638 (2009).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralph, T., Lam, P. A bright future for quantum communications. Nature Photon 3, 671–673 (2009). https://doi.org/10.1038/nphoton.2009.222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing