Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrafast waveform compression using a time-domain telescope

Abstract

Photonic systems provide access to extremely large bandwidths, which can approach a petahertz1. Unfortunately, full utilization of this bandwidth is not achievable using standard electro-optical technologies, and higher (>100 GHz) performance requires all-optical processing with nonlinear-optical elements. A solution to the implementation of these elements in robust, compact and efficient systems is emerging in photonic integrated circuits, as evidenced by their recent application in various ultrahigh-bandwidth instruments2,3,4. These devices enable the characterization of extremely complex signals by linking the high-speed optical domain with slower speed electronics. Here, we extend the application of these devices beyond characterization and demonstrate an instrument that generates complex and rapidly updateable ultrafast optical waveforms. We generate waveforms with 1.5-ps minimum features by compressing lower-bandwidth replicas created with a 10 GHz electro-optic modulator. In effect, our device allows for ultrahigh-speed direct 270 GHz modulation using relatively low speed devices and represents a new class of ultrafast waveform generators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal telescopic system.
Figure 2: Spectral and temporal outputs at different points in the temporal telescope.
Figure 3: Experimental demonstration of compression of 24-bit, 10 Gb s−1 packets to 270 Gb s−1.
Figure 4: Experimental demonstration of compression of analog waveforms.

Similar content being viewed by others

References

  1. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation is photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  2. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  3. Pelusi, M. et al. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photon. 3, 139–143 (2009).

    Article  ADS  Google Scholar 

  4. Salem, R. et al. High-speed optical sampling using a silicon-chip temporal magnifier. Opt. Express 17, 4324–4329 (2009).

    Article  ADS  Google Scholar 

  5. Treacy, E. B. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 5, 454–458 (1969).

    Article  ADS  Google Scholar 

  6. Akhmanov, S. A., Vysloukh, V. A. & Chirkin, A. S. Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation. Sov. Phys. Usp. 29, 642–677 (1986).

    Article  ADS  Google Scholar 

  7. Kolner, B. H. & Nazarathy, M., Temporal imaging with a time lens. Opt. Lett. 14, 630–632 (1989).

    Article  ADS  Google Scholar 

  8. Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30, 1951–1963 (1994).

    Article  ADS  Google Scholar 

  9. Bennett, C. V. & Kolner, B. H. Principles of parametric temporal imaging—Part I: System configurations. IEEE J. Quantum Electron. 36, 430–437 (2000).

    Article  ADS  Google Scholar 

  10. Bennett, C. V., Scott, R. P. & Kolner, B. H. Temporal magnification and reversal of 100 Gb/s optical data with an upconversion time microscope. Appl. Phys. Lett. 65, 2513–2515 (1994).

    Article  ADS  Google Scholar 

  11. Salem, R. et al. Optical time lens based on four-wave mixing on a silicon chip. Opt. Lett. 33, 1047–1049 (2008).

    Article  ADS  Google Scholar 

  12. Kauffman, M. T., Banyal, W. C., Godil, A. A. & Bloom, D. M. Time-to-frequency converter for measuring picosecond optical pulses. Appl. Phys. Lett. 64, 270–272 (1994).

    Article  ADS  Google Scholar 

  13. Bennett, C. V. & Kolner, B. H. Upconversion time microscope demonstrating 103x magnification of femtosecond waveforms. Opt. Lett. 24, 783–785 (1999).

    Article  ADS  Google Scholar 

  14. Mouradian, L. K., Louradour, F., Messager, V., Barthelemy, A. & Froehly, C. Spectro-temporal imaging of femtosecond events. IEEE J. Quantum Electron. 36, 795–801 (2000).

    Article  ADS  Google Scholar 

  15. Han, Y., Boyraz, O. & Jalali, B. Tera-sample per second real-time waveform digitizer. Appl. Phys. Lett. 87, 241116 (2005).

    Article  ADS  Google Scholar 

  16. Okawachi, Y. et al. High-resolution spectroscopy using a frequency magnifier. Opt. Express 17, 5691–5697 (2009).

    Article  ADS  Google Scholar 

  17. Almeida, P. J., Petropoulos, P., Thomsen, B. C., Ibsen, M. & Richardson, D. J. All-optical packet compression based on time-to-wavelength conversion. IEEE Photon. Technol. Lett. 16, 1688–1690 (2004).

    Article  ADS  Google Scholar 

  18. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  19. Dugan, M. A., Tull, J. X. & Warren, W. S. High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses. J. Opt. Soc. Am. B 14, 2348–2358 (1997).

    Article  ADS  Google Scholar 

  20. Leaird, D. E. & Weiner, A. M. Femtosecond direct space-to-time pulse shaping. IEEE J. Quantum Electron. 37, 495–504 (2001).

    Article  ADS  Google Scholar 

  21. Chou, J., Han, Y. & Jalali, B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photon. Technol. Lett. 15, 581–583 (2003).

    Article  ADS  Google Scholar 

  22. Willits, J. T., Weiner, A. M. & Cundiff, S. T. Theory of rapid-update line-by-line pulse shaping. Opt. Express 16, 315–327 (2008).

    Article  ADS  Google Scholar 

  23. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  Google Scholar 

  24. Lin, Q., Zhang, J., Fauchet, P. M. & Agrawal, G. P. Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. Opt. Express 14, 4786–4799 (2006).

    Article  ADS  Google Scholar 

  25. Foster, M. A., Turner, A. C., Salem, R., Lipson, M. & Gaeta, A. L. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express 15, 12949–12958 (2007).

    Article  ADS  Google Scholar 

  26. Turner, A. C., Foster, M. A., Gaeta, A. L. & Lipson, M. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express 16, 4881–4887 (2008).

    Article  ADS  Google Scholar 

  27. Dulkeith, E., Xia, F., Schares, L., Green, W. M. J. & Vlasov Y. A. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express. 14, 3853–3863 (2006).

    Article  ADS  Google Scholar 

  28. Turner, A. C. et al. Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Express 14, 4357–4362 (2006).

    Article  ADS  Google Scholar 

  29. Foster, M. A., Turner, A. C., Lipson, M. & Gaeta A. L. Nonlinear optics in photonic nanowires. Opt. Express 16, 1300–1320 (2008).

    Article  ADS  Google Scholar 

  30. Bennett, C. V. & Kolner, B. H. Aberrations in temporal imaging. IEEE J. Quantum Electron. 37, 20–32 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by DARPA through the optical arbitrary waveform generation program and by the Center for Nanoscale Systems, supported by the NSF and the New York State Office of Science, Technology and Academic Research.

Author information

Authors and Affiliations

Authors

Contributions

M.A.F., R.S., and Y.O. performed the experiments. M.A.F conceived of the compressor design. A.C.T. and M.A.F. designed the photonic chips. A.C.T. fabricated the photonic chips. M.A.F. and A.L.G prepared the manuscript. A.L.G. and M.L. supervised the project.

Corresponding author

Correspondence to Alexander L. Gaeta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, M., Salem, R., Okawachi, Y. et al. Ultrafast waveform compression using a time-domain telescope. Nature Photon 3, 581–585 (2009). https://doi.org/10.1038/nphoton.2009.169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing