Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Position-dependent and millimetre-range photodetection in phototransistors with micrometre-scale graphene on SiC

Abstract

The extraordinary optical and electronic properties of graphene make it a promising component of high-performance photodetectors. However, in typical graphene-based photodetectors demonstrated to date, the photoresponse only comes from specific locations near graphene over an area much smaller than the device size. For many optoelectronic device applications, it is desirable to obtain the photoresponse and positional sensitivity over a much larger area. Here, we report the spatial dependence of the photoresponse in backgated graphene field-effect transistors (GFET) on silicon carbide (SiC) substrates by scanning a focused laser beam across the GFET. The GFET shows a nonlocal photoresponse even when the SiC substrate is illuminated at distances greater than 500 µm from the graphene. The photoresponsivity and photocurrent can be varied by more than one order of magnitude depending on the illumination position. Our observations are explained with a numerical model based on charge transport of photoexcited carriers in the substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene phototransistor and gate voltage-tunable photocurrent.
Figure 2: Position-dependent photocurrent field effect and photocurrent dynamics.
Figure 3: Laser power-dependent photoresponsivity, and position-sensitive response time.
Figure 4: Model for position-sensitive photoresponse of the GFET.

Similar content being viewed by others

References

  1. Withers, F., Bointon, T. H., Craciun, M. F. & Russo, S. All-graphene photodetectors. ACS Nano 7, 5052–5057 (2013).

    Article  CAS  Google Scholar 

  2. Freitag, M., Low, T., Xia, F. N. & Avouris, P. Photoconductivity of biased graphene. Nat. Photon. 7, 53–59 (2013).

    Article  CAS  Google Scholar 

  3. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  CAS  Google Scholar 

  4. An, X., Liu, F., Jung, Y. J. & Kar, S. Tunable graphene–silicon heterojunctions for ultrasensitive photodetection. Nano Lett. 13, 909–916 (2013).

    Article  CAS  Google Scholar 

  5. Liu, N. et al. Large-area, transparent, and flexible infrared photodetector fabricated using p–n junctions formed by n-doping chemical vapor deposition grown graphene. Nano Lett. 14, 3702–3708 (2014).

    Article  CAS  Google Scholar 

  6. Shi, Y., Fang, W., Zhang, K., Zhang, W. & Li, L. J. Photoelectrical response in single-layer graphene transistors. Small 5, 2005–2011 (2009).

    Article  CAS  Google Scholar 

  7. Liu, C.-H., Chang, Y.-C., Norris, T. B. & Zhong, Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat. Nanotech. 9, 273–278 (2014).

    Article  CAS  Google Scholar 

  8. Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photon. 4, 297–301 (2010).

    Article  CAS  Google Scholar 

  9. Xia, F. N., Mueller, T., Lin, Y. M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nat. Nanotech. 4, 839–843 (2009).

    Article  CAS  Google Scholar 

  10. Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nat. Mater. 11, 865–871 (2012).

    Article  CAS  Google Scholar 

  11. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nat. Photon. 7, 892–896 (2013).

    Article  CAS  Google Scholar 

  12. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photon. 7, 883–887 (2013).

    Article  CAS  Google Scholar 

  13. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotech. 7, 363–368 (2012).

    Article  CAS  Google Scholar 

  14. Roy, K. et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotech. 8, 826–830 (2013).

    Article  CAS  Google Scholar 

  15. Zhang, B. Y. et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811 (2013).

    Article  Google Scholar 

  16. Huang, Y. Q., Zhu, R. J., Kang, N., Du, J. & Xu, H. Q. Photoelectrical response of hybrid graphene–PbS quantum dot devices. Appl. Phys. Lett. 103, 143119 (2013).

    Article  Google Scholar 

  17. Li, J., Niu, L., Zheng, Z. & Yan, F. Photosensitive graphene transistors. Adv. Mater. 26, 5239–5273 (2014).

    Article  CAS  Google Scholar 

  18. Sun, Z. & Chang, H. Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano 8, 4133–4156 (2014).

    Article  CAS  Google Scholar 

  19. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  CAS  Google Scholar 

  20. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  CAS  Google Scholar 

  21. Echtermeyer, T. J. et al. Photothermoelectric and photoelectric contributions to light detection in metal–graphene–metal photodetectors. Nano Lett. 14, 3733–3742 (2014).

    Article  CAS  Google Scholar 

  22. Kim, M. H. et al. Photothermal response in dual-gated bilayer graphene. Phys. Rev. Lett. 110, 247402 (2013).

    Article  Google Scholar 

  23. Peters, E. C., Lee, E. J. H., Burghard, M. & Kern, K. Gate dependent photocurrents at a graphene p–n junction. Appl. Phys. Lett. 97, 193102 (2010).

    Article  Google Scholar 

  24. Kildemo, M. Optical properties of silicon carbide polytypes below and around bandgap. Thin Solid Films 455–456, 187–195 (2004).

    Article  Google Scholar 

  25. Limpijumnong, S., Lambrecht, W. R. L., Rashkeev, S. N. & Segall, B. Optical-absorption bands in the 1–3 eV range in n-type SiC polytypes. Phys. Rev. B 59, 12890–12899 (1999).

    Article  CAS  Google Scholar 

  26. Foxe, M. et al. Graphene field-effect transistors on undoped semiconductor substrates for radiation detection. IEEE Trans. Nanotechnol. 11, 581–587 (2012).

    Article  Google Scholar 

  27. Cazalas, E. et al. Hysteretic response of chemical vapor deposition graphene field effect transistors on SiC substrates. Appl. Phys. Lett. 103, 053123 (2013).

    Article  Google Scholar 

  28. Da Silva, C. R. S., Justo, J. F. & Pereyra, I. Crystalline silicon oxycarbide: is there a native oxide for silicon carbide? Appl. Phys. Lett. 84, 4845–4847 (2004).

    Article  CAS  Google Scholar 

  29. Amy, F., Soukiassian, P., Hwu, Y. & Brylinski, C. Si-rich 6H- and 4H-SiC(0001) 3×3 surface oxidation and initial SiO2/SiC interface formation from 25 to 650 °C. Phys. Rev. B 65, 165323 (2002).

    Article  Google Scholar 

  30. Letov, V. et al. Transient photocurrent overshoot in quantum-well infrared photodetectors. Appl. Phys. Lett. 79, 2094–2096 (2001).

    Article  CAS  Google Scholar 

  31. Letov, V. et al. Experimental observation of transient photocurrent overshoot in quantum well infrared photodetectors. Infrared Phys. Technol. 42, 243–247 (2001).

    Article  Google Scholar 

  32. Xu, H. et al. High responsivity and gate tunable graphene–MoS2 hybrid phototransistor. Small 10, 2300–2306 (2014).

    Article  CAS  Google Scholar 

  33. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  34. Marinella, M. J. et al. Carrier generation lifetimes in 4H-SiC MOS capacitors. IEEE Trans. Electron Dev. 57, 1910–1923 (2010).

    Article  CAS  Google Scholar 

  35. Hemmingsson, C., Son, N. T., Kordina, O., Janzén, E. & Lindström, J. L. Capture cross sections of electron irradiation induced defects in 6H–SiC. J. Appl. Phys. 84, 704–708 (1998).

    Article  CAS  Google Scholar 

  36. Gong, M., Fung, S., Beling, C. D. & You, Z. Electron-irradiation-induced deep levels in n-type 6H–SiC. J. Appl. Phys. 85, 7604–7608 (1999).

    Article  CAS  Google Scholar 

  37. David, M. L. et al. Electrically active defects in irradiated 4H–SiC. J. Appl. Phys. 95, 4728–4733 (2004).

    Article  CAS  Google Scholar 

  38. Klein, P. B. et al. Lifetime-limiting defects in n 4H–SiC epilayers. Appl. Phys. Lett. 88, 052110 (2006).

    Article  Google Scholar 

  39. Glaser, E. et al. Infrared PL signatures of n-type bulk SiC substrates with nitrogen impurity concentration between 1016 and 1017 cm−3. Mater. Sci. Forum 600–603, 449–452 (2009).

    Google Scholar 

  40. Matsumoto, T., Nishizawa, S. & Yamasaki, S. Calculation of lattice constant of 4H–SiC as a function of impurity concentration. Mater. Sci. Forum 645–648, 247–250 (2010).

    Article  Google Scholar 

  41. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support for this work from Department of Homeland Security (grant no. 2009-DN-077-ARI036) and Defense Threat Reduction Agency (grant no. HDTRA1-09-1-0047). The authors thank N. Mandal and J. Tian for technical assistance during ultraviolet and NIR photoresponse measurements and fabrication, respectively.

Author information

Authors and Affiliations

Authors

Contributions

B.K.S., T.-F.C. and I.C. fabricated the devices. B.K.S. and T.-F.C. carried out the measurements. B.K.S. analysed the data. Y.P.C. supervised the project. E.C. and I.J. developed the model with input from the other authors. All authors contributed to interpretation of the results and writing of the manuscript.

Corresponding author

Correspondence to Yong P. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1726 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, B., Cazalas, E., Chung, TF. et al. Position-dependent and millimetre-range photodetection in phototransistors with micrometre-scale graphene on SiC. Nature Nanotech 12, 668–674 (2017). https://doi.org/10.1038/nnano.2017.46

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.46

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing