Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multifunctional high-performance van der Waals heterostructures

Abstract

A range of novel two-dimensional materials have been actively explored for More Moore and More-than-Moore device applications because of their ability to form van der Waals heterostructures with unique electronic properties. However, most of the reported electronic devices exhibit insufficient control of multifunctional operations. Here, we leverage the band-structure alignment properties of narrow-bandgap black phosphorus and large-bandgap molybdenum disulfide to realize vertical heterostructures with an ultrahigh rectifying ratio approaching 106 and on–off ratio up to 107. Furthermore, we design and fabricate tunable multivalue inverters, in which the output logic state and window of the mid-logic can be controlled by specific pairs of channel length and, most importantly, by the electric field, which shifts the band-structure alignment across the heterojunction. Finally, high gains over 150 are achieved in the inverters with optimized device geometries, showing great potential for future logic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterostructure schematics and material characterization.
Figure 2: Electronic properties of VFET.
Figure 3: Electronic properties of the lateral HJFET.
Figure 4: Tunable multi-value inverter.
Figure 5: Tunable ternary inverter.
Figure 6: High-performance binary inverter.

Similar content being viewed by others

References

  1. Geim, A. & Grigorieva, I. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  2. Li, M. Y., Chen, C. H., Shi, Y. & Li, L. J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 19, 322–335 (2015).

    Article  Google Scholar 

  3. Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2011).

    Article  Google Scholar 

  4. Yu, W. J. et al. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246–252 (2013).

    Article  CAS  Google Scholar 

  5. Moriya, R. et al. Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Appl. Phys. Lett. 105, 083119 (2014).

    Article  Google Scholar 

  6. Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotech. 8, 100–103 (2013).

    Article  CAS  Google Scholar 

  7. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013).

    Article  CAS  Google Scholar 

  8. Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano. Lett. 14, 5590–5597 (2014).

    Article  CAS  Google Scholar 

  9. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano. Lett. 14, 4785–4791 (2014).

    Article  CAS  Google Scholar 

  10. Lee, G. H., Cui, X. & Kim, P. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

    Article  CAS  Google Scholar 

  11. Flöry, N. et al. A WSe2/MoSe2 heterostructure photovoltaic device. Appl. Phys. Lett. 107, 123106 (2015).

    Article  Google Scholar 

  12. Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. Acs Nano 9, 2071–2079 (2015).

    Article  CAS  Google Scholar 

  13. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015).

    Article  CAS  Google Scholar 

  14. Xue, Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 2, 10–28 (2015).

    Google Scholar 

  15. Nourbakhsh, A., Zubair, A., Dresselhaus, M. S. & Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano. Lett. 16, 1359–1366 (2016).

    Article  CAS  Google Scholar 

  16. Warschauer, D. Electrical and optical properties of crystalline black phosphorus. J. Appl. Phys. 34, 1853–1860 (1963).

    Article  CAS  Google Scholar 

  17. Wittig, J. & Matthias, B. Superconducting phosphorus. Science 160, 994–995 (1968).

    Article  CAS  Google Scholar 

  18. Asahina, H. & Morita, A. Band structure and optical properties of black phosphorus. J. Phys. C 17, 1839 (1984).

    Article  CAS  Google Scholar 

  19. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Article  Google Scholar 

  20. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano. Lett. 14, 3347–3352 (2014).

    Article  CAS  Google Scholar 

  21. Du, Y., Liu, H., Deng, Y. & Ye, P. D. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8, 10035–10042 (2014).

    Article  CAS  Google Scholar 

  22. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  23. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  24. Kang, J. et al. Probing out-of-plane charge transport in black phosphorus with graphene-contacted vertical field-effect transistors. Nano. Lett. 16, 2580–2585 (2016).

    Article  CAS  Google Scholar 

  25. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  26. Yin, Z. et al. Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012).

    Article  CAS  Google Scholar 

  27. Das, S., Chen, H.-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2012).

    Article  Google Scholar 

  28. Deng, Y. et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nano 8, 8292–8299 (2014).

    Article  CAS  Google Scholar 

  29. Ye, L., Li, H., Chen, Z. & Xu, J. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photon. 3, 692–699 (2016).

    Article  CAS  Google Scholar 

  30. Chen, P. et al. Gate tunable MoS2–black phosphorus heterojunction devices. 2D Mater. 2, 034009 (2015).

    Article  Google Scholar 

  31. Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2 . ACS Nano 5, 9934–9938 (2011).

    Article  CAS  Google Scholar 

  32. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    Article  CAS  Google Scholar 

  33. Lin, Y. F. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 26, 3263–3269 (2014).

    Article  CAS  Google Scholar 

  34. Tosun, M. et al. High-gain inverters based on WSe2 complementary field-effect transistors. ACS Nano 8, 4948–4953 (2014).

    Article  CAS  Google Scholar 

  35. Kim, J. S. et al. Dual gate black phosphorus field effect transistors on glass for NOR logic and organic light emitting diode switching. Nano Lett. 15, 5778–5783 (2015).

    Article  CAS  Google Scholar 

  36. Su, Y., Kshirsagar, C. U., Robbins, M. C., Haratipour, N. & Koester, S. J. Symmetric complementary logic inverter using integrated black phosphorus and MoS2 transistors. 2D Mater. 3, 011006 (2015).

    Article  Google Scholar 

  37. Yu, L. et al. High-performance WSe2 complementary metal oxide semiconductor technology and integrated circuits. Nano Lett. 15, 4928–4934 (2015).

    Article  CAS  Google Scholar 

  38. Pu, J. et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28, 4111–4119 (2016).

    Article  CAS  Google Scholar 

  39. Yu, L. et al. Design, modeling and fabrication of CVD grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016).

    Article  CAS  Google Scholar 

  40. Zhao, M. et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotech. 11, 954–959 (2016).

    Article  CAS  Google Scholar 

  41. Shim, J. et al. Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 7, 13413 (2016).

    Article  CAS  Google Scholar 

  42. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P. M. & Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  43. Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank L. Li, S. Li and X. Wang for helpful discussions and technical support, the staff in ‘Wuhan National High Magnetic Field Center’ for technical support during low-temperature electrical measurements, the staff at the ‘Center of Micro-fabrication and Characterization of Wuhan National Laboratory for Optoelectronics’ and ‘Huazhong University of Science and Technology Analytical and Testing Center’ for support with electron-beam lithography, electron-beam evaporation and Raman measurements. This project is supported by the National Natural Science Foundation of China (grants 61574066, 61390504 and 11404118).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. conceived the project. M.H. transferred the heterostructures and fabricated the devices. M.H. and S.L. performed optical characterizations and electrical measurements. M.H., X.L. and Y.W. analysed the data. Z.Z. grew the CVD MoS2 and X.X. grew the high-κ dielectric layers. M.H. and Y.W. co-wrote the paper. All authors contributed to discussions about the manuscript.

Corresponding author

Correspondence to Yanqing Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1906 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Li, S., Zhang, Z. et al. Multifunctional high-performance van der Waals heterostructures. Nature Nanotech 12, 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing