Letter

Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques

Received:
Accepted:
Published online:

Abstract

Magnetic skyrmions are stabilized by a combination of external magnetic fields, stray field energies, higher-order exchange interactions and the Dzyaloshinskii–Moriya interaction (DMI)1,2,3,4,5,6. The last favours homochiral skyrmions, whose motion is driven by spin–orbit torques and is deterministic, which makes systems with a large DMI relevant for applications. Asymmetric multilayers of non-magnetic heavy metals with strong spin–orbit interactions and transition-metal ferromagnetic layers provide a large and tunable DMI4,5,6,7,8. Also, the non-magnetic heavy metal layer can inject a vertical spin current with transverse spin polarization into the ferromagnetic layer via the spin Hall effect9. This leads to torques10 that can be used to switch the magnetization completely in out-of-plane magnetized ferromagnetic elements, but the switching is deterministic only in the presence of a symmetry-breaking in-plane field11,12,13. Although spin–orbit torques led to domain nucleation in continuous films14 and to stochastic nucleation of skyrmions in magnetic tracks15, no practical means to create individual skyrmions controllably in an integrated device design at a selected position has been reported yet. Here we demonstrate that sub-nanosecond spin–orbit torque pulses can generate single skyrmions at custom-defined positions in a magnetic racetrack deterministically using the same current path as used for the shifting operation. The effect of the DMI implies that no external in-plane magnetic fields are needed for this aim. This implementation exploits a defect, such as a constriction in the magnetic track, that can serve as a skyrmion generator. The concept is applicable to any track geometry, including three-dimensional designs16.

  • Subscribe to Nature Nanotechnology for full access:

    $59

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    & Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

  2. 2.

    et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

  3. 3.

    , , & Variation of topology in magnetic bubbles in a colossal magnetoresistive manganite. Adv. Mater. 29, 1603958 (2016).

  4. 4.

    et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

  5. 5.

    et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016).

  6. 6.

    et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

  7. 7.

    et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

  8. 8.

    et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).

  9. 9.

    , , , & Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

  10. 10.

    & Spin–orbit torques in action. Nat. Nanotech. 9, 86–88 (2014).

  11. 11.

    et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

  12. 12.

    et al. Ultrafast magnetization switching by spin–orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

  13. 13.

    , , & Threshold current for switching of a perpendicular magnetic layer induced by spin hall effect. Appl. Phys. Lett. 102, 112410 (2013).

  14. 14.

    , , , & Initialization-free multilevel states driven by spin–orbit torque switching. Adv. Mater. 29, 1601575 (2017).

  15. 15.

    et al. Room-temperature current-induced generation and motion of sub-100 nm skyrmions. Nano Lett. 17, 2703–2712 (2017).

  16. 16.

    , & Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  17. 17.

    , & Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

  18. 18.

    Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics. Nat. Rev. Mater. 16044 (2016).

  19. 19.

    Skyrmions: moving with the current. Nat. Nanotech. 8, 160–161 (2013).

  20. 20.

    et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

  21. 21.

    , , , & Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).

  22. 22.

    et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

  23. 23.

    et al. Memory functions of magnetic skyrmions. Jpn J. Appl. Phys. 54, 053001 (2015).

  24. 24.

    , & Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotech. 8, 742–747 (2013).

  25. 25.

    & A reversible conversion between a skyrmion and a domain–wall pair in a junction geometry. Nat. Commun. 5, 4652 (2014).

  26. 26.

    et al. Current-induced skyrmion generation and dynamics in symmetric bilayers. Nat. Commun. 8, 15765 (2017).

  27. 27.

    et al. The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. Nano Lett. 17, 3006–3012(2017).

  28. 28.

    et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

  29. 29.

    In Holographic Materials and Optical Systems (eds Naydenova, I., Babeva, T. & Nazarova, D.) Ch. 10 (InTech, 2017).

  30. 30.

    & Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184422 (2013).

  31. 31.

    et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences under Award no. DE-SC0012371. F.B. acknowledges financial support by the German Science Foundation under grant no. BU 3297/1-1.

Author information

Author notes

    • Felix Büttner
    •  & Ivan Lemesh

    These authors contributed equally to this work.

Affiliations

  1. Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • Felix Büttner
    • , Ivan Lemesh
    • , Lucas Caretta
    •  & Geoffrey S. D. Beach
  2. Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany

    • Michael Schneider
    • , Bastian Pfau
    • , Christian M. Günther
    • , Piet Hessing
    • , Jan Geilhufe
    • , Dieter Engel
    •  & Stefan Eisebitt
  3. Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany

    • Christian M. Günther
    •  & Stefan Eisebitt
  4. Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstraβe 12, 89081 Ulm, Germany

    • Benjamin Krüger
  5. Deutsches Elektronen-Synchrotron (DESY), FS-PE, Notkestraße 85, 22607 Hamburg, Germany

    • Jens Viefhaus

Authors

  1. Search for Felix Büttner in:

  2. Search for Ivan Lemesh in:

  3. Search for Michael Schneider in:

  4. Search for Bastian Pfau in:

  5. Search for Christian M. Günther in:

  6. Search for Piet Hessing in:

  7. Search for Jan Geilhufe in:

  8. Search for Lucas Caretta in:

  9. Search for Dieter Engel in:

  10. Search for Benjamin Krüger in:

  11. Search for Jens Viefhaus in:

  12. Search for Stefan Eisebitt in:

  13. Search for Geoffrey S. D. Beach in:

Contributions

F.B., B.P., S.E. and G.S.D.B. conceived and designed the experiment. F.B., I.L., M.S., C.M.G. and D.E. prepared and pre-characterized the samples. F.B., I.L., M.S., B.P., P.H., J.G. and L.C. performed the experiments with support by J.V. B.P. and P.H. reconstructed the holographic images. I.L., F.B. and B.K. performed the micromagnetic simulations. F.B. drafted the manuscript. S.E. and G.S.D.B. supervised the project. All the authors discussed the results, the implications and the figures, and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Felix Büttner.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

Videos

  1. 1.

    Supplementary information

    Supplementary Movie 1

  2. 2.

    Supplementary information

    Supplementary Movie 2

  3. 3.

    Supplementary information

    Supplementary Movie 3

  4. 4.

    Supplementary information

    Supplementary Movie 4

  5. 5.

    Supplementary information

    Supplementary Movie 5