Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes

Abstract

Developing high-capacity anodes is a must to improve the energy density of lithium batteries for electric vehicle applications. Alloy anodes are one promising option, but without pre-stored lithium, the overall energy density is limited by the low-capacity lithium metal oxide cathodes. Recently, lithium metal has been revived as a high-capacity anode, but faces several challenges owing to its high reactivity and uncontrolled dendrite growth. Here, we show a series of Li-containing foils inheriting the desirable properties of alloy anodes and pure metal anodes. They consist of densely packed LixM (M = Si, Sn, or Al) nanoparticles encapsulated by large graphene sheets. With the protection of graphene sheets, the large and freestanding LixM/graphene foils are stable in different air conditions. With fully expanded LixSi confined in the highly conductive and chemically stable graphene matrix, this LixSi/graphene foil maintains a stable structure and cyclability in half cells (400 cycles with 98% capacity retention). This foil is also paired with high-capacity Li-free V2O5 and sulfur cathodes to achieve stable full-cell cycling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the microstructure and fabrication process of the LixM/graphene foils.
Figure 2: Characterization of the LixSi/graphene foil.
Figure 3: Stability of the LixSi/graphene foil.
Figure 4: Electrochemical performance of the LixSi/graphene foil.
Figure 5: Characterization of the sulfur electrode and the sulfur batteries.

Similar content being viewed by others

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  2. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  3. Yoshio, M., Wang, H. Y., Fukuda, K., Hara, Y. & Adachi, Y. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material. J. Electrochem. Soc. 147, 1245–1250 (2000).

    Article  CAS  Google Scholar 

  4. Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).

    Article  CAS  Google Scholar 

  5. Shi, F. F. et al. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nat. Commun. 7, 11886 (2016).

    Article  CAS  Google Scholar 

  6. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008).

    Article  CAS  Google Scholar 

  7. Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 6, 7393 (2015).

    Article  CAS  Google Scholar 

  8. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotech. 9, 187–192 (2014).

    Article  CAS  Google Scholar 

  9. Wang, J. Z., Zhong, C., Chou, S. L. & Liu, H. K. Flexible free-standing graphene-silicon composite film for lithium-ion batteries. Electrochem Commun. 12, 1467–1470 (2010).

    Article  CAS  Google Scholar 

  10. Zhu, Y. H. et al. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries. Langmuir 29, 744–749 (2013).

    Article  CAS  Google Scholar 

  11. Cui, L. F., Hu, L. B., Choi, J. W. & Cui, Y. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano 4, 3671–3678 (2010).

    Article  CAS  Google Scholar 

  12. Wu, X. L. et al. Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv. Energy Mater. 3, 1155–1160 (2013).

    Article  CAS  Google Scholar 

  13. Wang, L. et al. Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Lett. 12, 5632–5636 (2012).

    Article  CAS  Google Scholar 

  14. Ji, X. L., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  CAS  Google Scholar 

  15. Liu, Y. Y. et al. V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries. Adv. Energy Mater. 1, 194–202 (2011).

    Article  CAS  Google Scholar 

  16. Jin, S. et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li–S batteries. Adv. Mater. 28, 9094–9102 (2016).

    Article  CAS  Google Scholar 

  17. Shen, C. F. et al. Silicon(lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density. Nano Energy 19, 68–77 (2016).

    Article  CAS  Google Scholar 

  18. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Eng. Environ. Sci. 7, 513–537 (2014).

    CAS  Google Scholar 

  19. Kim, H. et al. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 42, 9011–9034 (2013).

    Article  CAS  Google Scholar 

  20. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    Article  CAS  Google Scholar 

  21. Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    Article  CAS  Google Scholar 

  22. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004).

    Article  CAS  Google Scholar 

  23. Liang, Z. et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl Acad. Sci. USA 113, 2862–2867 (2016).

    Article  CAS  Google Scholar 

  24. Lin, D. C. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).

    Article  CAS  Google Scholar 

  25. Mogi, R. et al. Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 149, 1578–1583 (2002).

    Article  Google Scholar 

  26. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article  CAS  Google Scholar 

  27. Yan, K. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 14, 6016–6022 (2014).

    Article  CAS  Google Scholar 

  28. Kazyak, E., Wood, K. N. & Dasgupta, N. P. Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chem. Mater. 27, 6457–6462 (2015).

    Article  CAS  Google Scholar 

  29. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  CAS  Google Scholar 

  30. Kozen, A. C. et al. Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    Article  CAS  Google Scholar 

  31. Xiang, B., Wang, L., Liu, G. & Minor, A. M. Electromechanical probing of Li/Li2CO3 core/shell particles in a TEM. J. Electrochem. Soc. 160, 415–419 (2013).

    Article  Google Scholar 

  32. Wang, Z. H. et al. Application of stabilized lithium metal powder (SLMP (R)) in graphite anode—a high efficient prelithiation method for lithium-ion batteries. J. Power Sources 260, 57–61 (2014).

    Article  CAS  Google Scholar 

  33. Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  Google Scholar 

  34. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

    Article  CAS  Google Scholar 

  35. Zang, J. F. et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).

    Article  CAS  Google Scholar 

  36. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    Article  CAS  Google Scholar 

  37. Zhao, J. et al. Dry-air-stable lithium silicide–lithium oxide core–shell nanoparticles as high-capacity prelithiation reagents. Nat. Commun. 5, 5088 (2014).

    Article  CAS  Google Scholar 

  38. Zhou, G. M. et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries. Adv. Mater. 26, 625–631 (2014).

    Article  CAS  Google Scholar 

  39. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  40. Cambaz, Z. G., Yushin, G., Osswald, S., Mochalin, V. & Goyotsi, Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 46, 841–849 (2008).

    Article  CAS  Google Scholar 

  41. Aurbach, D., Weissman, I., Schechter, A. & Cohen, H. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir 12, 3991–4007 (1996).

    Article  CAS  Google Scholar 

  42. Li, W. et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).

    Google Scholar 

  43. Seh, Z. W. et al. Sulfur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat. Commun. 4, 1331 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Y.C. acknowledges the support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, Battery Materials Research Program of the US Department of Energy. Y.L. acknowledges the National Science Foundation Graduate Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., G.Z. and Y.C. conceived the concept. J.Z. and G.Z. carried out the synthesis and performed materials characterization and electrochemical measurements. J.X., Y.J., L.L., Y.L., P.-C.H. and J.W assisted in the synthesis and characterization of electrode materials. K.L. conducted stress–strain tests. K.Y. and H.-M.C. provided important experimental insights. J.Z., G.Z., K.Y., Y.L., H.-M.C. and Y.C. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2041 kb)

Supplementary Movie

Supplementary Movie (MOV 18068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhou, G., Yan, K. et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nature Nanotech 12, 993–999 (2017). https://doi.org/10.1038/nnano.2017.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing