Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simultaneous and coordinated rotational switching of all molecular rotors in a network

Abstract

A range of artificial molecular systems has been created that can exhibit controlled linear and rotational motion. In the further development of such systems, a key step is the addition of communication between molecules in a network. Here, we show that a two-dimensional array of dipolar molecular rotors can undergo simultaneous rotational switching when applying an electric field from the tip of a scanning tunnelling microscope. Several hundred rotors made from porphyrin-based double-decker complexes can be simultaneously rotated when in a hexagonal rotor network on a Cu(111) surface by applying biases above 1 V at 80 K. The phenomenon is observed only in a hexagonal rotor network due to the degeneracy of the ground-state dipole rotational energy barrier of the system. Defects are essential to increase electric torque on the rotor network and to stabilize the switched rotor domains. At low biases and low initial rotator angles, slight reorientations of individual rotors can occur, resulting in the rotator arms pointing in different directions. Analysis reveals that the rotator arm directions are not random, but are coordinated to minimize energy via crosstalk among the rotors through dipolar interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and self-assembly of molecular rotors.
Figure 2: Simultaneous rotations.
Figure 3: Rotation mechanisms.
Figure 4: Electric torque and coordinated reorientations.

Similar content being viewed by others

References

  1. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  2. Bath, J. & Turberfield, A. J. DNA nanomachines. Nature Nanotech. 2, 275–284 (2007).

    Article  CAS  Google Scholar 

  3. Carter, N. J. & Cross, R. A. Mechanics of the kinesin step. Nature 435, 308–312 (2005).

    Article  CAS  Google Scholar 

  4. Goel, A. & Vogel, V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nature Nanotech. 8, 465–475 (2008).

    Article  Google Scholar 

  5. Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).

    Article  CAS  Google Scholar 

  6. Finnigan, G. C., Hanson-Smith, V., Stevens, T. H. & Thornton, J. W. Evolution of increased complexity in a molecular machine. Nature 481, 360–365 (2013).

    Article  Google Scholar 

  7. V an Delden, R. A. et al. Unidirectional molecular motor on a gold surface. Nature 437, 1337–1340 (2005).

    Article  Google Scholar 

  8. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  CAS  Google Scholar 

  9. Perera, U. G. E. et al. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nature Nanotech. 8, 46–51 (2013).

    Article  CAS  Google Scholar 

  10. Ye, T., Takami, T., Wang, R., Jiang, J. & Weiss, P. S. Tuning interactions between ligands in self-assembled double-decker phthalocyanine arrays. J. Am. Chem. Soc. 128, 10984–10985 (2006).

    Article  CAS  Google Scholar 

  11. Takami, T. et al. Controlled adsorption orientation for double-decker complexes. J. Phys. Chem. C 111, 2077–2080 (2007).

    Article  CAS  Google Scholar 

  12. Komeda, T. et al. Observation and electric current control of a local spin in a single-molecule magnet. Nature Commun. 2, 217 (2011).

    Article  Google Scholar 

  13. Otsuki, J., Komatsu, Y., Kobayashi, D., Asakawa, M. & Miyake, K. Rotational liberation of a double-decker porphyrin visualized. J. Am. Chem. Soc. 132, 6870–6871 (2010).

    Article  CAS  Google Scholar 

  14. Tanaka, H. et al. Molecular rotation in self-assembled multidecker porphyrin complexes. ACS Nano 5, 9575–9582 (2011).

    Article  CAS  Google Scholar 

  15. Ecija, D. et al. Assembly and manipulation of rotatable cerium porphyrinato sandwich complexes on a surface. Angew. Chem. Int. Ed. 50, 3872–3877 (2011).

    Article  CAS  Google Scholar 

  16. Fahrendorf, S. et al. Accessing 4f-states in single-molecule spintronics. Nature Commun. 4, 2425 (2013).

    Article  Google Scholar 

  17. Fu, Y.-S. et al. Reversible chiral switching of bis(phthalocyaninato) terbium(III) on a metal surface. Nano Lett. 12, 3931–3935 (2012).

    Article  CAS  Google Scholar 

  18. Katoh, K. et al. Direct observation of lanthanide(III)–phthalocyanine molecules on Au(111) by using scanning tunneling microscopy and scanning tunneling spectroscopy and thin-film field-effect transistor properties of Tb(III)- and Dy(III)–phthalocyanine molecules. J. Am. Chem. Soc. 131, 9967–9976 (2009).

    Article  CAS  Google Scholar 

  19. Isshiki, H. et al. Scanning tunneling microscopy investigation of tris(phthalocyaninato)yttrium triple-decker molecules deposited on Au(111). J. Phys. Chem. C 114, 12202–12206 (2010).

    Article  CAS  Google Scholar 

  20. Stefak, R., Ratel-Ramond, N. & Rapenne, G. Synthesis and electrochemical characteristics of a donor–acceptor porphyrinate rotor mounted on a naphthalocyaninato europium complex. Inorg. Chim. Acta 380, 181–186 (2012).

    Article  CAS  Google Scholar 

  21. Gimzewski, J. K. et al. Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998).

    Article  CAS  Google Scholar 

  22. Grill, L. et al. Rolling a single molecular wheel at the atomic scale. Nature Nanotech. 2, 95–98 (2007).

    Article  CAS  Google Scholar 

  23. Manzano, C. et al. Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nature Mater. 8, 576–579 (2009).

    Article  CAS  Google Scholar 

  24. Tierney, H. L. et al. Experimental demonstration of a single-molecule electric motor. Nature Nanotech. 6, 625–629 (2011).

    Article  CAS  Google Scholar 

  25. Kottas, G. S., Clarke, I. L., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    Article  CAS  Google Scholar 

  26. Shih, Y. T., Liao, Y. Y. & Chuu, D. S. Rotational states of an adsorbed dipole molecule in an external electric field. Phys. Rev. B 68, 075402 (2003).

    Article  Google Scholar 

  27. Mishima, K. & Yamashita, K. Quantum computing using rotational modes of two polar molecules. Chem. Phys. 361, 106–117 (2009).

    Article  CAS  Google Scholar 

  28. Devel, M., Girard, C., Joachim, C. & Martin, O. J. F. Field induced manipulation of fullerene molecules with the STM: a self-consistent theoretical study. Appl. Surf. Sci. 87, 390–397 (1995).

    Article  Google Scholar 

  29. Akutagawa, T. et al. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nature Mater. 8, 342–347 (2009).

    Article  CAS  Google Scholar 

  30. Shima, H. & Nakayama, T. Dielectric anomaly in coupled rotor systems. Phys. Rev. B 69, 035202 (2004).

    Article  Google Scholar 

  31. Brankov, J. G. & Danchev, D. M. Ground state of an infinite two-dimensional system of dipoles on a lattice with arbitrary rhombicity angle. Physica 144A, 128–139 (1987).

    Article  Google Scholar 

  32. Pace, G. et al. Cooperative light-induced molecular movements of highly ordered azobenzene self-assembled monolayers. Proc. Natl Acad. Sci. USA 104, 9937–9942 (2007).

    Article  CAS  Google Scholar 

  33. Hla, S.-W. STM single atom/molecule manipulation and its application to nanoscience and technology. J. Vac. Sci. Technol. B 23, 1351–1360 (2005).

    Article  CAS  Google Scholar 

  34. Ross, R. B. et al. Ab initio relativistic effective potentials with spin–orbit operators .4. Cs through Rn. J. Chem. Phys. 93, 6654–6670 (1990).

    Article  CAS  Google Scholar 

  35. Sautet, P. & Joachim, C. Interpretation of STM images—copper–pthalocyanine on copper. Surf. Sci. 271, 387–394 (1992).

    Article  CAS  Google Scholar 

  36. Ample, F. & Joachim, C. A semi-empirical study of polyacene molecules adsorbed on a Cu(110) surface. Surf. Sci. 600, 3243–3251 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work (all the STM experiments as well as analytical and DFT calculations) is financially supported by the United State Department of Energy, Basic Energy Sciences grant no. DE-FG02-02ER46012. R.S., J.E., C.J. and G.R. acknowledge support from ANR P3N (AUTOMOL project no. ANR 09-NANO-040) for the chemical synthesis of molecules and STM image calculations. The authors acknowledge ZYVEX for providing the molecules studied in the initial part of the project. S.W.H. and K.F.B. acknowledge the use of the Ohio Supercomputing Centre (PHS0275).

Author information

Authors and Affiliations

Authors

Contributions

S.W.H. conceived and designed the experiments. Y.Z., H.K., V.I., G.P., Y.L. and A.D. performed the STM experiments. R.S. and G.R. synthesized the molecules. J.E. and C.J. performed STM image, adsorption site and rotational barrier calculations. K.F.B., Y.Z. and S.W.H. performed the DFT and analytical calculations. Y.Z., H.K., V.I. and S.W.H. analysed the experimental data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to S.-W. Hla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1917 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Kersell, H., Stefak, R. et al. Simultaneous and coordinated rotational switching of all molecular rotors in a network. Nature Nanotech 11, 706–712 (2016). https://doi.org/10.1038/nnano.2016.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.69

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing