Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanomechanical mapping of first binding steps of a virus to animal cells

Abstract

Viral infection is initiated when a virus binds to cell surface receptors. Because the cell membrane is dynamic and heterogeneous, imaging living cells and simultaneously quantifying the first viral binding events is difficult. Here, we show an atomic force and confocal microscopy set-up that allows the surface receptor landscape of cells to be imaged and the virus binding events within the first millisecond of contact with the cell to be mapped at high resolution (<50 nm). We present theoretical approaches to contour the free-energy landscape of early binding events between an engineered virus and cell surface receptors. We find that the first bond formed between the viral glycoprotein and its cognate cell surface receptor has relatively low lifetime and free energy, but this increases as additional bonds form rapidly (≤1 ms). The formation of additional bonds occurs with positive allosteric modulation and the three binding sites of the viral glycoprotein are quickly occupied. Our quantitative approach can be readily applied to study the binding of other viruses to animal cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of combining confocal microscopy and FD-based AFM to image animal cells and to detect virus binding.
Figure 2: Confocal microscopy and FD-based AFM of wild-type MDCK cells and MDCK cells expressing TVA receptors (MDCK–TVA cells) under culturing conditions.
Figure 3: Mapping EnvA–RABV(ΔG) virus binding to MDCK–TVA cells using correlative confocal microscopy and FD-based AFM.
Figure 4: Extracting energetic and kinetic parameters of the EnvA–RABV(ΔG) virus binding to TVA receptors expressed by MDCK cells.
Figure 5: Free-energy landscape describing the binding steps of the EnvA pseudotyped rabies virus to MDCK–TVA cells.

Similar content being viewed by others

References

  1. Dimitrov, D. S. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2, 109–122 (2004).

    Article  Google Scholar 

  2. Smith, A. E. & Helenius, A. How viruses enter animal cells. Science 304, 237–242 (2004).

    Article  CAS  Google Scholar 

  3. Brandenburg, B. & Zhuang, X. Virus trafficking—learning from single-virus tracking. Nat. Rev. Microbiol. 5, 197–208 (2007).

    Article  CAS  Google Scholar 

  4. McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  Google Scholar 

  5. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  Google Scholar 

  6. Chojnacki, J. et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338, 524–528 (2012).

    Article  CAS  Google Scholar 

  7. Kukura, P. et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923–927 (2009).

    Article  CAS  Google Scholar 

  8. Sun, E., He, J. & Zhuang, X. Live cell imaging of viral entry. Curr. Opin. Virol. 3, 34–43 (2013).

    Article  CAS  Google Scholar 

  9. Wickersham, I. R. et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  Google Scholar 

  10. Wall, N. R., Wickersham, I. R., Cetin, A., De La Parra, M. & Callaway, E. M. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc. Natl Acad. Sci. USA 107, 21848–21853 (2010).

    Article  CAS  Google Scholar 

  11. Cronin, J., Zhang, X.-Y. & Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Therapy 5, 387–398 (2005).

    Article  CAS  Google Scholar 

  12. Ginger, M., Haberl, M., Conzelmann, K. K., Schwarz, M. K. & Frick, A. Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front. Neural Circuits 7, 1–15 (2013).

    Google Scholar 

  13. Medalsy, I., Hensen, U. & Muller, D. J. Imaging and quantifying chemical and physical properties of native proteins at molecular resolution by force–volume AFM. Angew. Chem. Int. Ed. 50, 12103–12108 (2011).

    Article  CAS  Google Scholar 

  14. Dufrêne, Y. F., Martínez-Martín, D., Medalsy, I., Alsteens, D. & Müller, D. J. Multiparametric imaging of biological systems by force–distance curve-based AFM. Nat. Methods 10, 847–854 (2013).

    Article  Google Scholar 

  15. Alsteens, D., Trabelsi, H., Soumillion, P. & Dufrêne, Y. F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 4, 2926 (2013).

    Article  Google Scholar 

  16. Pfreundschuh, M., Martinez-Martin, D., Mulvihill, E., Wegmann, S. & Muller, D. J. Multiparametric high-resolution imaging of native proteins by force–distance curve-based AFM. Nat. Protoc. 9, 1113–1130 (2014).

    Article  CAS  Google Scholar 

  17. Alsteens, D. et al. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape. Nat. Methods 12, 845–851 (2015).

    Article  CAS  Google Scholar 

  18. Pfreundschuh, M. et al. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM. Nat. Commun. 6, 8857 (2015).

    Article  CAS  Google Scholar 

  19. Banerjee, I., Yamauchi, Y., Helenius, A. & Horvath, P. High-content analysis of sequential events during the early phase of influenza A virus infection. PLoS ONE 8, e68450 (2013).

    Article  CAS  Google Scholar 

  20. Poole, K., Meder, D., Simons, K. & Müller, D. The effect of RAFT lipid depletion on microvilli formation in MDCK cells, visualized by atomic force microscopy. FEBS Lett. 565, 53–58 (2004).

    Article  CAS  Google Scholar 

  21. Rankl, C. et al. Multiple receptors involved in human rhinovirus attachment to live cells. Proc. Natl Acad. Sci. USA 105, 17778–17783 (2008).

    Article  Google Scholar 

  22. Sieben, C. et al. Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl Acad. Sci. USA 109, 13626–13631 (2012).

    Article  CAS  Google Scholar 

  23. Oesterhelt, F., Rief, M. & Gaub, H. E. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New J. Phys. 1, 6.1–6.11 (1999).

    Article  Google Scholar 

  24. Evans, E. & Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  CAS  Google Scholar 

  25. Evans, E. A. & Calderwood, D. A. Forces and bond dynamics in cell adhesion. Science 316, 1148–1153 (2007).

    Article  CAS  Google Scholar 

  26. Dobrowsky, T. M., Zhou, Y., Sun, S. X., Siliciano, R. F. & Wirtz, D. Monitoring early fusion dynamics of human immunodeficiency virus type 1 at single-molecule resolution. J. Virol. 82, 7022–7033 (2008).

    Article  CAS  Google Scholar 

  27. Friddle, R. W., Noy, A. & De Yoreo, J. J. Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc. Natl Acad. Sci. USA 109, 13573–13578 (2012).

    Article  CAS  Google Scholar 

  28. Damico, R. L., Crane, J. & Bates, P. Receptor-triggered membrane association of a model retroviral glycoprotein. Proc. Natl Acad. Sci. USA 95, 2580–2585 (1998).

    Article  CAS  Google Scholar 

  29. Mammen, M., Choi, S. K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  30. Stegmann, T., White, J. M. & Helenius, A. Intermediates in influenza induced membrane fusion. EMBO J. 9, 4231–4241 (1990).

    Article  CAS  Google Scholar 

  31. Sattentau, Q. J. & Moore, J. P. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J. Exp. Med. 174, 407–415 (1991).

    Article  CAS  Google Scholar 

  32. Thomas, D. et al. Mass and molecular composition of vesicular stomatitis virus: a scanning transmission electron microscopy analysis. J. Virol. 54, 598–607 (1985).

    CAS  Google Scholar 

  33. Osakada, F. & Callaway, E. M. Design and generation of recombinant rabies virus vectors. Nat. Protoc. 8, 1583–1601 (2013).

    Article  Google Scholar 

  34. Boulant, S., Stanifer, M. & Lozach, P. Y. Dynamics of virus–receptor interactions in virus binding, signaling, and endocytosis. Viruses 7, 2794–2815 (2015).

    Article  CAS  Google Scholar 

  35. Stencel-Baerenwald, J. E., Reiss, K., Reiter, D. M., Stehle, T. & Dermody, T. S. The sweet spot: defining virus–sialic acid interactions. Nat. Rev. Microbiol. 12, 739–749 (2014).

    Article  CAS  Google Scholar 

  36. Evans, E. & Williams, P. in Physics of Bio-Molecules and Cells (eds Flyvbjerg, H., Jülicher, F., Orms, P. & David, F.) 145–204 (Springer, 2002).

    Book  Google Scholar 

  37. Barde, I., Salmon, P. & Trono, D. Production and titration of lentiviral vectors. Curr. Protoc. Neurosci. 4, 12.10 (2010).

    Google Scholar 

  38. Freshney, R. I. Animal Cell Culture: A Practical Approach (Oxford Univ. Press, 1992).

    Google Scholar 

  39. Wildling, L. et al. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug. Chem. 22, 1239–1248 (2011).

    Article  CAS  Google Scholar 

  40. Hutter, J. L. & Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Lopez and V. Jäggin for assistance with fluorescence-activated cell sorting operation and analysis, M. Mohr for producing eGFP-encoding lentiviruses and E. Bieler, D. Mathys and S. Erpel for assistance with scanning electron microscopy. The plasmid pAAV-EF1a-FLEX-TVA-mCherry was a gift from N. Uchida. The EnvA expressing BHK cell line was a gift from E. Callaway. The Swiss National Science Foundation (SNF; grant no. 310030B_160225 to D.J.M.), NCCR Molecular Systems Engineering and the European Molecular Biology Organization (EMBO; ALTF 265-2013 to D.A. and ALTF 506-2012 to D.M.M.) supported this work. D.A. is Research Associate of FRS-FNRS.

Author information

Authors and Affiliations

Authors

Contributions

D.A., D.J.M., B.R. and R.N. designed the experiments. R.N. produced viruses, modified cell lines and validated virus-binding and transduction. D.A. and R.S. performed confocal microscopy. D.A. and D.M.-M. set up the AFM chamber. D.A. set up and performed AFM experiments and developed strategies to chemically functionalize the AFM tip. M.D., R.N. and R.S. performed scanning electron microscopy. D.A., D.J.M. and R.N. co-analysed the experimental and calculated data. All authors wrote the paper.

Corresponding authors

Correspondence to David Alsteens or Daniel J. Müller.

Ethics declarations

Competing interests

D.A., D.M.M. and D.J.M. have applied for a patent for the chamber enabling AFM and optical microscopy under cell culture conditions (EP15002176.4). The other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1716 kb)

Supplementary information

Supplementary Movie (MOV 2871 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsteens, D., Newton, R., Schubert, R. et al. Nanomechanical mapping of first binding steps of a virus to animal cells. Nature Nanotech 12, 177–183 (2017). https://doi.org/10.1038/nnano.2016.228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.228

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing