Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Antiferromagnetic spintronics

Abstract

Antiferromagnetic materials are internally magnetic, but the direction of their ordered microscopic moments alternates between individual atomic sites. The resulting zero net magnetic moment makes magnetism in antiferromagnets externally invisible. This implies that information stored in antiferromagnetic moments would be invisible to common magnetic probes, insensitive to disturbing magnetic fields, and the antiferromagnetic element would not magnetically affect its neighbours, regardless of how densely the elements are arranged in the device. The intrinsic high frequencies of antiferromagnetic dynamics represent another property that makes antiferromagnets distinct from ferromagnets. Among the outstanding questions is how to manipulate and detect the magnetic state of an antiferromagnet efficiently. In this Review we focus on recent works that have addressed this question. The field of antiferromagnetic spintronics can also be viewed from the general perspectives of spin transport, magnetic textures and dynamics, and materials research. We briefly mention this broader context, together with an outlook of future research and applications of antiferromagnetic spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antiferromagnetic memory.
Figure 2: Local spin-transfer torque in an antiferromagnet.
Figure 3: Readout by antiferromagnetic ohmic AMR.
Figure 4: Readout by antiferromagnetic TAMR.
Figure 5: Current-induced global and local spin polarizations.
Figure 6: Principles of electrical writing and readout in antiferromagnetic memories.
Figure 7: YIG/IrMn or YIG/Pt structures and the electrodes used to measure the d.c. voltage due to the ISHE in IrMn (Pt), resulting from the spin currents generated in the two configurations.

Similar content being viewed by others

References

  1. Néel, L. Magnetism and the local molecular field. Nobel Lectures, Physics 1963–1970 (1970).

  2. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    CAS  Google Scholar 

  3. Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

    Google Scholar 

  4. Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    Google Scholar 

  5. Gomonay, E. V. & Loktev, V. Spintronics of antiferromagnetic systems (review article). Low Temp. Phys. 40, 17–35 (2014).

    CAS  Google Scholar 

  6. Parkin, S. et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–679 (2003).

    CAS  Google Scholar 

  7. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    CAS  Google Scholar 

  8. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 10, 347–351 (2011).

    CAS  Google Scholar 

  9. Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–198 (2012).

    CAS  Google Scholar 

  10. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nature Mater. 13, 367–374 (2014).

    CAS  Google Scholar 

  11. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS  Google Scholar 

  12. Moriyama, T. et al. Sequential write-read operations in FeRh antiferromagnetic memory. Appl. Phys. Lett. 107, 122403 (2015).

    Google Scholar 

  13. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Google Scholar 

  14. Scholl, A., Liberati, M., Arenholz, E., Ohldag, H. & Stöhr, J. Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 92, 247201 (2004).

    CAS  Google Scholar 

  15. Duine, R. Spintronics: an alternating alternative. Nature Mater. 10, 344–345 (2011).

    CAS  Google Scholar 

  16. Wang, Y. Y. et al. Room-temperature perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012).

    CAS  Google Scholar 

  17. Ralph, D. Spintronics research at Cornell. KITP Progr. Spintron. http://go.nature.com/CdkJ8G (2013).

  18. Fina, I. et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nature Commun. 5, 4671 (2014).

    CAS  Google Scholar 

  19. Wang, Y. Y., Song, C., Wang, G. Y., Zeng, F. & Pan, F. Evidence for asymmetric rotation of spins in antiferromagnetic exchange-spring. New J. Phys. 16, 123032 (2014).

    Google Scholar 

  20. Ralph, D. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    CAS  Google Scholar 

  21. Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).

    Google Scholar 

  22. Núñez, A., Duine, R., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Google Scholar 

  23. Saidaoui, H. B. M., Manchon, A. & Waintal, X. Spin transfer torque in antiferromagnetic spin valves: from clean to disordered regimes. Phys. Rev. B 89, 174430 (2014).

    Google Scholar 

  24. Wei, Z. et al. Changing exchange bias in spin valves with an electric current. Phys. Rev. Lett. 98, 116603 (2007).

    CAS  Google Scholar 

  25. Gomonay, H. V., Kunitsyn, R. V. & Loktev, V. M. Symmetry and the macroscopic dynamics of antiferromagnetic materials in the presence of spin-polarized current. Phys. Rev. B 85, 134446 (2012).

    Google Scholar 

  26. Prakhya, K., Popescu, A. & Haney, P. M. Current-induced torques between ferromagnets and compensated antiferromagnets: symmetry and phase coherence effects. Phys. Rev. B 89, 054421 (2014).

    Google Scholar 

  27. Cheng, R. & Niu, Q. Dynamics of antiferromagnets driven by spin current. Phys. Rev. B 89, 081105 (2014).

    Google Scholar 

  28. Tang, X. L., Zhang, H. W., Su, H., Zhong, Z. Y. & Jing, Y. L. Changing and reversing the exchange bias in a current-in-plane spin valve by means of an electric current. Appl. Phys. Lett. 91, 122504 (2007).

    Google Scholar 

  29. Urazhdin, S. & Anthony, N. Effect of polarized current on the magnetic state of an antiferromagnet. Phys. Rev. Lett. 99, 046602 (2007).

    Google Scholar 

  30. Dai, N. V. et al. Impact of in-plane currents on magnetoresistance properties of an exchange-biased spin valve with an insulating antiferromagnetic layer. Phys. Rev. B 77, 132406 (2008).

    Google Scholar 

  31. Tang, X., Su, H., Zhang, H. W., Jing, Y. L. & Zhong, Z. Y. Tuning the direction of exchange bias in ferromagnetic/antiferromagnetic bilayer by angular-dependent spin-polarized current. J. Appl. Phys. 112, 073916 (2012).

    Google Scholar 

  32. McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3D alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Google Scholar 

  33. Daughton, J. Magnetoresistive memory technology. Thin Solid Films 216, 162–168 (1992).

    CAS  Google Scholar 

  34. Zhang, X. & Zou, L. K. Planar Hall effect in Y3Fe5O12/IrMn films. Appl. Phys. Lett. 105, 262401 (2014).

    Google Scholar 

  35. Wong, A. T. et al. Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3 . Appl. Phys. Lett. 105, 052401 (2014).

    Google Scholar 

  36. Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Preprint at http://arxiv.org/abs/1508.04877 (2015).

  37. Petti, D. et al. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Appl. Phys. Lett. 102, 192404 (2013).

    Google Scholar 

  38. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Google Scholar 

  39. Shull, C. G. & Smart, J. S. Detection of antiferromagnetism by neutron diffraction. Phys. Rev. 76, 1256–1257 (1949).

    Google Scholar 

  40. Shull, C., Chase, C. & Myers, F. Electron polarization. Phys. Rev. 63, 29–37 (1943).

    CAS  Google Scholar 

  41. Mott, N. F. The scattering of fast electrons by atomic nuclei. Proc. R. Soc. A Math. Phys. Eng. Sci. 124, 425–442 (1929).

    CAS  Google Scholar 

  42. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Google Scholar 

  43. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Google Scholar 

  44. Acharyya, R., Nguyen, H. Y. T., Pratt, W. P. & Bass, J. A study of spin-flipping in sputtered IrMn using Py-based exchange-biased spin-valves. J. Appl. Phys. 109, 07C503 (2011).

    Google Scholar 

  45. Reichlová, H. et al. Current induced torques in structures with ultra-thin IrMn antiferromagnet. Phys. Rev. B 92, 165424 (2015).

    Google Scholar 

  46. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    CAS  Google Scholar 

  47. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    CAS  Google Scholar 

  48. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental discovery of the spin-Hall effect in Rashba spin-orbit coupled semiconductor systems. Preprint at http://arxiv.org/abs/cond-mat/0410295v1 (2004).

  49. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    CAS  Google Scholar 

  50. Silov, A. Y. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

    CAS  Google Scholar 

  51. Ganichev, S. D. et al. Can an electric current orient spins in quantum wells? Preprint at http://arxiv.org/abs/cond-mat/0403641 (2004).

  52. Bernevig, B. A. & Vafek, O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B 72, 033203 (2005).

    Google Scholar 

  53. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nature Phys. 5, 656–659 (2009).

    CAS  Google Scholar 

  54. Zhang, X., Liu, Q., Luo, J.-W., Freeman, A. J. & Zunger, A. Hidden spin polarization in inversion-symmetric bulk crystals. Nature Phys. 10, 387–393 (2014).

    CAS  Google Scholar 

  55. Ciccarelli, C. et al. Room-temperature spin-orbit torque in NiMnSb. Preprint at http://arxiv.org/abs/1510.03356 (2015).

  56. Wadley, P. et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nature Commun. 4, 2322 (2013).

    CAS  Google Scholar 

  57. Wu, H. C. et al. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy. Adv. Mater. 24, 6374–6379 (2012).

    CAS  Google Scholar 

  58. Barthem, V. M. T. S., Colin, C. V., Mayaffre, H., Julien, M.-H. & Givord, D. Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nature Commun. 4, 2892 (2013).

    CAS  Google Scholar 

  59. Olejník, K., Novák, V., Wunderlich, J. & Jungwirth, T. Electrical detection of magnetization reversal without auxiliary magnets. Phys. Rev. B 91, 180402 (2015).

    Google Scholar 

  60. Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nature Phys. 11, 570–575 (2015).

    CAS  Google Scholar 

  61. Keffer, F. & Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 85, 329–337 (1952).

    CAS  Google Scholar 

  62. Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3 . Nature 429, 850–853 (2004).

    CAS  Google Scholar 

  63. Fiebig, M. et al. Ultrafast magnetization dynamics of antiferromagnetic compounds. J. Phys. D 41, 164005 (2008).

    Google Scholar 

  64. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2010).

    Google Scholar 

  65. Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

    Google Scholar 

  66. Satoh, T., Iida, R., Higuchi, T., Fiebig, M. & Shimura, T. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nature Photon. 9, 25–29 (2014).

    Google Scholar 

  67. Schumacher, H. W. et al. Phase coherent precessional magnetization reversal in microscopic spin valve elements. Phys. Rev. Lett. 90, 017201 (2003).

    CAS  Google Scholar 

  68. Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

    Google Scholar 

  69. Swaving, A. C. & Duine, R. A. Current-induced torques in continuous antiferromagnetic textures. Phys. Rev. B 83, 054428 (2011).

    Google Scholar 

  70. Cheng, R. & Niu, Q. Electron dynamics in slowly varying antiferromagnetic texture. Phys. Rev. B 86, 245118 (2012).

    Google Scholar 

  71. Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

    Google Scholar 

  72. Tveten, E. G., Qaiumzadeh, A. & Brataas, A. Antiferromagnetic domain wall motion induced by spin waves. Phys. Rev. Lett. 112, 147204 (2014).

    Google Scholar 

  73. Gomonay, O. Berry-phase effects and electronic dynamics in a noncollinear antiferromagnetic texture. Phys. Rev. B 91, 144421 (2015).

    Google Scholar 

  74. Tveten, E. G., Tristan, M., Linder, J. & Brataas, A. The intrinsic magnetization of antiferromagnetic textures. Preprint at http://arxiv.org/abs/1506.06561 (2015).

  75. Zhang, X., Zhou, Y. & Ezawa, M. Antiferromagnetic skyrmion: stability, creation and manipulation. Preprint at http://arxiv.org/abs/1504.01198 (2015).

  76. Barker, J. & Tretiakov, O. A. Antiferromagnetic skyrmions. Preprint at http://arxiv.org/abs/1505.06156 (2015).

  77. Takei, S. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).

    Google Scholar 

  78. Wang, H., Du, C., Hammel, P. C. & Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 113, 097202 (2014).

    Google Scholar 

  79. Hahn, C. et al. Conduction of spin currents through insulating antiferromagnetic oxides. Europhys. Lett. 108, 57005 (2014).

    Google Scholar 

  80. Moriyama, T. et al. Anti-damping spin transfer torque through epitaxial nickel oxide. Appl. Phys. Lett. 106, 162406 (2015).

    Google Scholar 

  81. Takei, S., Moriyama, T., Ono, T. & Tserkovnyak, Y. Antiferromagnet-mediated spin transfer between a metal and a ferromagnet. Phys. Rev. B 92, 020409 (2015).

    Google Scholar 

  82. Ohnuma, Y., Adachi, H., Saitoh, E. & Maekawa, S. Spin Seebeck effect in antiferromagnets and compensated ferrimagnets. Phys. Rev. B 87, 014423 (2013).

    Google Scholar 

  83. Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

    Google Scholar 

  84. Brataas, A., Skarsvåg, H., Tveten, E. G. & Fjærbu, E. L Heat transport between antiferromagnetic insulators and normal metals. Phys. Rev. B 92, 180414 (2015).

    Google Scholar 

  85. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Preprint at http://arxiv.org/abs/1509.00439 (2015).

  86. Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).

    CAS  Google Scholar 

  87. Tshitoyan, V. et al. Electrical manipulation of ferromagnetic NiFe by antiferromagnetic IrMn. Phys. Rev. B 92, 214406 (2015).

    Google Scholar 

  88. Fukami, S., Zhang, C., Duttagupta, S. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet/ferromagnet bilayer system. Preprint at http://arxiv.org/abs/1507.00888 (2015).

  89. Mendes, J. B. S. et al. Large inverse spin Hall effect in the antiferromagnetic metal Ir20Mn80 . Phys. Rev. B 89, 140406 (2014).

    Google Scholar 

  90. Zhang, W. et al. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Google Scholar 

  91. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Google Scholar 

  92. Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nature Mater. 12, 641–646 (2013).

    CAS  Google Scholar 

  93. Wu, S. M. et al. Full electric control of exchange bias. Phys. Rev. Lett. 110, 067202 (2013).

    CAS  Google Scholar 

  94. Jungwirth, T. et al. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds. Phys. Rev. B 83, 035321 (2011).

    Google Scholar 

  95. Cava, R. A useful pyramid scheme. Physics 4, 7 (2011).

    Google Scholar 

  96. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

    CAS  Google Scholar 

  97. Jungwirth, T. et al. Spin-dependent phenomena and device concepts explored in (Ga,Mn)As. Rev. Mod. Phys. 86, 855–896 (2014).

    CAS  Google Scholar 

  98. Máca, F. et al. Room-temperature antiferromagnetism in CuMnAs. J. Magn. Magn. Mater. 324, 1606–1612 (2012).

    Google Scholar 

  99. Beleanu, A. et al. Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs. Phys. Rev. B 88, 184429 (2013).

    Google Scholar 

  100. Kim, B. J. et al. Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4 . Science 323, 1329–1332 (2009).

    CAS  Google Scholar 

  101. Wang, C. et al. Anisotropic magnetoresistance in antiferromagnetic Sr2IrO4 . Phys. Rev. X 4, 041034 (2014).

    Google Scholar 

  102. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Google Scholar 

  103. Nakatsui, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Google Scholar 

  104. Norman, M. R. The challenge of unconventional superconductivity. Science 332, 196–200 (2011).

    CAS  Google Scholar 

  105. Bruno, P. in Magnetism: Molecules to Materials III Vol. 2 (eds Miller, J. S. & Drillon, M.) 329–353 (Wiley, 2002).

    Google Scholar 

  106. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    CAS  Google Scholar 

  107. Binasch, G., Grunberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures. Phys. Rev. B 39, 4828–4830 (1989).

    CAS  Google Scholar 

  108. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    CAS  Google Scholar 

  109. Engel, B. N. et al. A 4-Mb toggle MRAM based on a novel bit and switching method. IEEE Trans. Magn. 41, 132–136 (2005).

    Google Scholar 

  110. Saarikoski, H., Kohno, H., Marrows, C. H. & Tatara, G. Current-driven dynamics of coupled domain walls in a synthetic antiferromagnet. Phys. Rev. B 90, 094411 (2014).

    Google Scholar 

  111. Yang, S.-H., Ryu, K.-S. & Parkin, S. Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nature Nanotech. 10, 221–226 (2015).

    CAS  Google Scholar 

  112. Li, Q. et al. Activation of antiferromagnetic domain switching in exchange-coupled Fe/CoO/MgO(001) systems. Phys. Rev. B 91, 134428 (2015).

    Google Scholar 

  113. Wunderlich, J. et al. Coulomb blockade anisotropic magnetoresistance effect in a (Ga,Mn)As single-electron transistor. Phys. Rev. Lett. 97, 077201 (2006).

    CAS  Google Scholar 

  114. Ciccarelli, C. et al. Spin gating electrical current. Appl. Phys. Lett. 101, 122411 (2012).

    Google Scholar 

  115. Coey, J. M. D. Louis Néel: retrospective (invited). J. Appl. Phys. 93, 8224–8229 (2003).

    CAS  Google Scholar 

  116. Gomory, F. et al. Experimental realization of a magnetic cloak. Science 335, 1466–1468 (2012).

    Google Scholar 

  117. Serga, A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the EU European Research Council (Advanced Grant No. 268066), the Ministry of Education of the Czech Republic (Grant No. LM2011026) and the Grant Agency of the Czech Republic (Grant No. 14-37427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Jungwirth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jungwirth, T., Marti, X., Wadley, P. et al. Antiferromagnetic spintronics. Nature Nanotech 11, 231–241 (2016). https://doi.org/10.1038/nnano.2016.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing