Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways

Abstract

Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands—folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Encapsulation of QDs within DNA icosahedra.
Figure 2: Cellular validation of atomistic model of the DNA icosahedron.
Figure 3: Binding of IQDGal3 to the plasma membranes of cells.
Figure 4: TEM studies reveal that IQDGal3 is endocytosed through CLICs.
Figure 5: Single-particle tracking of IQDSTxB in live cells.

Similar content being viewed by others

References

  1. Kairdolf, B. A. et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 6, 143–162 (2013).

    Article  CAS  Google Scholar 

  2. You, C. et al. Self-controlled monofunctionalization of quantum dots for multiplexed protein tracking in live cells. Angew. Chem. Int. Ed. 49, 4108–4112 (2010).

    Article  CAS  Google Scholar 

  3. Clarke, S. et al. Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays. Nano Lett. 10, 2147–2154 (2010).

    Article  CAS  Google Scholar 

  4. You, C. et al. Electrostatically controlled quantum dot monofunctionalization for interrogating the dynamics of protein complexes in living cells. ACS Chem. Biol. 8, 320–326 (2013).

    Article  CAS  Google Scholar 

  5. Carstairs, H. M. J., Lymperopoulos, K., Kapanidis, A. N., Bath, J. & Turberfield, A. J. DNA monofunctionalization of quantum dots. ChemBioChem 10, 1781–1783 (2009).

    Article  CAS  Google Scholar 

  6. Howarth, M. et al. Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat. Methods 5, 397–399 (2008).

    Article  CAS  Google Scholar 

  7. Farlow, J. et al. Formation of targeted monovalent quantum dots by steric exclusion. Nat. Methods 10, 1203–1205 (2013).

    Article  CAS  Google Scholar 

  8. Bhatia, D. et al. Icosahedral DNA nanocapsules by modular assembly. Angew. Chem. Int. Ed. 48, 4134–4137 (2009).

    Article  CAS  Google Scholar 

  9. Pan, K. et al. Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat. Commun. 5, 5578 (2014).

    Article  CAS  Google Scholar 

  10. Zhang, C. et al. Exterior modification of a DNA tetrahedron. Chem. Commun. 46, 6792–6794 (2010).

    Article  CAS  Google Scholar 

  11. Angell, C., Xie, S., Zhang, L. & Chen, Y. DNA nanotechnology for precise control over drug delivery and gene therapy. Small http://dx.doi.org/10.1002/smll.201502167 (2016).

  12. Bhatia, D., Surana, S., Chakraborty, S., Koushika, S. P. & Krishnan, Y. A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. Nat. Commun. 2, 339 (2011).

    Article  Google Scholar 

  13. Surana, S., Bhatia, D. & Krishnan, Y. A method to study in vivo stability of DNA nanostructures. Methods 64, 94–100 (2013).

    Article  CAS  Google Scholar 

  14. Edwardson, T. G. W., Carneiro, K. M. M., McLaughlin, C. K., Serpell, C. J. & Sleiman, H. F. Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat. Chem. 5, 868–875 (2013).

    Article  CAS  Google Scholar 

  15. McLaughlin, C. K. et al. Three-dimensional organization of block copolymers on ‘DNA-minimal’ scaffolds. J. Am. Chem. Soc. 134, 4280–4286 (2012).

    Article  CAS  Google Scholar 

  16. Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    Article  CAS  Google Scholar 

  17. Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotech. 7, 389–393 (2012).

    Article  CAS  Google Scholar 

  18. Jaiswal, J. K. & Simon, S. M. Imaging single events at the cell membrane. Nat. Chem. Biol. 3, 92–98 (2007).

    Article  CAS  Google Scholar 

  19. Alivisatos, A. P., Gu, W. & Larabell, C. Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005).

    Article  CAS  Google Scholar 

  20. Johannes, L., Parton, R. G., Bassereau, P. & Mayor, S. Building endocytic pits without clathrin. Nat. Rev. Mol. Cell Biol. 42, 1–11 (2015).

    Google Scholar 

  21. Carion, O., Mahler, B., Pons, T. & Dubertret, B. Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat. Protoc. 2, 2383–2390 (2007).

    Article  CAS  Google Scholar 

  22. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).

    Article  CAS  Google Scholar 

  23. Cornell, W. D. et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995).

    Article  CAS  Google Scholar 

  24. Santosh, M. & Maiti, P. K. Structural rigidity of paranemic crossover and juxtapose DNA nanostructures. Biophys. J. 101, 1393–1402 (2011).

    Article  CAS  Google Scholar 

  25. Joshi, H., Dwaraknath, A. & Maiti, P. K. Structure, stability and elasticity of DNA nanotubes. Phys. Chem. Chem. Phys. 17, 1424–1434 (2014).

    Article  Google Scholar 

  26. Maiti, P. K., Pascal, T. A., Vaidehi, N., Heo, J. & Goddard, W. A. Atomic-level simulations of seeman DNA nanostructures: the paranemic crossover in salt solution. Biophys. J. 90, 1463–1479 (2006).

    Article  CAS  Google Scholar 

  27. Sabharanjak, S. & Mayor, S. Folate receptor endocytosis and trafficking. Adv. Drug Deliv. Rev. 56, 1099–1109 (2004).

    Article  CAS  Google Scholar 

  28. Furey, W. S. et al. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Biochemistry 37, 2979–2990 (1998).

    Article  CAS  Google Scholar 

  29. Erben, C. M., Goodman, R. P. & Turberfield, A. J. Single-molecule protein encapsulation in a rigid DNA cage. Angew. Chem. Int. Ed. 45, 7414–7417 (2006).

    Article  CAS  Google Scholar 

  30. Bhatia, D., Chakraborty, S., Mehtab, S. & Krishnan, Y. A method to encapsulate molecular cargo within DNA icosahedra. Methods Mol. Biol. 991, 65–80 (2013).

    Article  CAS  Google Scholar 

  31. Lakshminarayan, R. et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 16, 595–606 (2014).

    Article  CAS  Google Scholar 

  32. Delacour, D. et al. Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic 8, 379–388 (2007).

    Article  CAS  Google Scholar 

  33. Römer, W. et al. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675 (2007).

    Article  Google Scholar 

  34. Römer, W. et al. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140, 540–553 (2010).

    Article  Google Scholar 

  35. Renard, H.-F. et al. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517, 493–496 (2015).

    Article  CAS  Google Scholar 

  36. Johannes, L. & Popoff, V. Tracing the retrograde route in protein trafficking. Cell 135, 1175–1187 (2008).

    Article  CAS  Google Scholar 

  37. Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 17, 3–21 (2005).

    Article  CAS  Google Scholar 

  38. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    Article  CAS  Google Scholar 

  39. Wang, B., Kuo, J. & Granick, S. Bursts of active transport in living cells. Phys. Rev. Lett. 111, 1–16 (2013).

    Google Scholar 

  40. Bálint, Š., Verdeny Vilanova, I., Sandoval Álvarez, Á. & Lakadamyali, M. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. Proc. Natl Acad. Sci. USA 110, 3375–3380 (2013).

    Article  Google Scholar 

  41. Zajac, A. L., Goldman, Y. E., Holzbaur, E. L. F. & Ostap, E. M. Local cytoskeletal and organelle interactions impact molecular-motor-driven early endosomal trafficking. Curr. Biol. 23, 1173–1180 (2013).

    Article  CAS  Google Scholar 

  42. Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

    Article  CAS  Google Scholar 

  43. Mayor, S. & Maxfield, F. R. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol. Biol. Cell. 6, 929–944 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Surana and T. Pons for discussions and suggestions. The imaging facilities CIFF at NCBS and PICT-IBiSA / Nikon Imaging Centre at the Institut Curie-CNRS and the France-BioImaging infrastructure (ANR-10-INSB-04) are acknowledged. D.B. thanks CEFIPRA for the Charpak Fellowship, the Institute Curie and HFSP for postdoctoral fellowships. This work was supported by the following grants: 4803-B from CEFIPRA to B.D. and Y.K.; RGP0029/2014 from HFSP to Y.K. and L.J.; Agence Nationale pour la Recherche ANR-09-BLAN-283 from FPGG to B.D. and L.J.; ANR-11 BSV2 014 03 to L.J.; project 340485 from the European Research Council to L.J.; UL1 TR000430 from the National Center for Advancing Translational Sciences of the NIH and start-up support from the University of Chicago to Y.K. The Johannes team is members of Labex CelTisPhyBio (11-LBX-0038) and of Idex Paris Sciences et Lettres (ANR-10-IDEX-0001-02 PSL).

Author information

Authors and Affiliations

Authors

Contributions

D.B. and Y.K. conceived the project and designed experiments; D.B. performed all experiments, some collaboratively. C.W., M.N., S.A., C.G. and B.N. contributed reagents and tools. S.A., V.P. and V.C. performed key experiments. H.J. and P.K.M. designed and performed molecular dynamics. D.B., C.W., P.K.M., L.J., B.D. and Y.K. designed experiments and analysed data. D.B., L.J. and Y.K. co-wrote the manuscript. All of the authors discussed the results and the manuscript.

Corresponding authors

Correspondence to Ludger Johannes, Benoit Dubertret or Yamuna Krishnan.

Ethics declarations

Competing interests

B.D. is also associated with NexDot, a for-profit company that provided the QDs used in this collaborative study.

Supplementary information

Supplementary information

Supplementary information (PDF 4817 kb)

Supplementary Movie 1

Supplementary Movie 1 (AVI 27483 kb)

Supplementary Movie 2

Supplementary Movie 2 (AVI 15032 kb)

Supplementary Movie 3

Supplementary Movie 3 (AVI 9705 kb)

Supplementary Movie 4

Supplementary Movie 4 (AVI 49367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, D., Arumugam, S., Nasilowski, M. et al. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nature Nanotech 11, 1112–1119 (2016). https://doi.org/10.1038/nnano.2016.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing