Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly anisotropic and robust excitons in monolayer black phosphorus

Abstract

Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years1,2. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties3,4,5,6,7,8,9. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of 0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of monolayer black phosphorus.
Figure 2: Exciton photoluminescence with large in-plane anisotropy.
Figure 3: Large exciton binding energy revealed by PLE spectroscopy.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  3. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    Article  CAS  Google Scholar 

  4. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

    Article  CAS  Google Scholar 

  5. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  Google Scholar 

  6. Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Article  Google Scholar 

  7. Rodin, A. S., Carvalho, A. & Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112, 176801 (2014).

    Article  CAS  Google Scholar 

  8. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Article  Google Scholar 

  9. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  10. Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1416581112 (2015).

  11. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Article  Google Scholar 

  12. Scholes, G. D. & Rumbles, G. Excitons in nanoscale systems. Nature Mater. 5, 683–696 (2006).

    Article  CAS  Google Scholar 

  13. Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

    Article  CAS  Google Scholar 

  14. Sugai, S. & Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53, 753–755 (1985).

    Article  CAS  Google Scholar 

  15. Fei, R. & Yang, L. Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 105, 083120 (2014).

    Article  Google Scholar 

  16. Li, P. & Appelbaum, I. Electrons and holes in phosphorene. Phys. Rev. B 90, 115439 (2014).

    Article  Google Scholar 

  17. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  18. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  19. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  20. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  21. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

    Article  CAS  Google Scholar 

  22. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Mater. 13, 1091–1095 (2014).

    Article  CAS  Google Scholar 

  23. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

    Article  CAS  Google Scholar 

  24. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    Article  Google Scholar 

  25. Tran, V. & Yang, L. Scaling laws for the bandgap and optical response of phosphorene nanoribbons. Phys. Rev. B 89, 245407 (2014).

    Article  Google Scholar 

  26. Çakır, D., Sahin, H. & Peeters, F. M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90, 205421 (2014).

    Article  Google Scholar 

  27. Lin, Y. et al. Dielectric screening of excitons and trions in single-layer MoS2 . Nano Lett. 14, 5569–5576 (2014).

    Article  CAS  Google Scholar 

  28. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  29. Cheiwchanchamnangij, T. & Lambrecht, W. R. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    Article  Google Scholar 

  30. Chernikov, A. et al. Non-hydrogenic exciton Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  31. Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

  32. Bao, Q. et al. Broadband graphene polarizer. Nature Photon. 5, 411–415 (2011).

    Article  CAS  Google Scholar 

  33. Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was mainly supported by the Office of Naval Research (N00014-14-1-0565). M.J., K.S. and X.X. are supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0008145 and DE-SC0012509). H.Z. and H.W. are supported by Army Research Laboratory (W911NF-14-2-0113). The use of facilities in Yale was supported by Yale Institute for Nanoscience and Quantum Engineering (YINQE) and the National Science Foundation (MRSEC DMR-1119826). The UW facility is partially supported by the State of Washington through the University of Washington Clean Energy Institute. V.T. and L.Y. are supported by the National Science Foundation (DMR-1207141). The authors acknowledge Mildred Dresselhaus at Massachusetts Institute of Technology for helpful comments during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

F.X., X.W. and H.W. conceived the projects. X.W. prepared samples and carried out Raman measurements. A.M.J., K.L.S. and X.W. performed photoluminescence measurements. V.T. and L.Y. performed the density functional theory calculations. Y.J. and H.Z. helped with sample preparation. F.X. and X.W. wrote the manuscript with input from L.Y., X.X. and H.W. F.X. and X.X. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xiaodong Xu or Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jones, A., Seyler, K. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nature Nanotech 10, 517–521 (2015). https://doi.org/10.1038/nnano.2015.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing