Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Prospects for thermoelectricity in quantum dot hybrid arrays

The electronic, chemical and mechanical properties of quantum dot structures may lead to thermoelectric devices with a range of advantages with respect to existing ones based on bulk polycrystalline materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relevant length scales and parameters for thermoelectric materials.
Figure 2: Possibilities for enhancing thermoelectric performance by controlling energetic and transport phenomena in quantum dot hybrid array thermoelectrics.

References

  1. Chu, S. & Majumdar, A. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  2. Mancini, T. R., Gary, J. A., Kolb, G. J. & Ho, C. K. Power Tower Technology Roadmap and Cost Reduction Plan Report No. SAND2011–2419 (2011).

    Book  Google Scholar 

  3. US Energy Information Administration Annual Energy Outlook 2012 (US EIA, 2012).

  4. Tritt, T. M., Boettner, H. & Chen, L. MRS Bull. 33, 366–368 (2008).

    Article  CAS  Google Scholar 

  5. Snyder, G. J. & Toberer, E. S. Nature Mater. 7, 105–114 (2008).

    Article  CAS  Google Scholar 

  6. Shakouri, A. Annu. Rev. Mater. Res. 41, 399–431 (2011).

    Article  CAS  Google Scholar 

  7. Zebarjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. & Chen, G. Energ. Environ. Sci. 5, 5147–5162 (2012).

    Article  Google Scholar 

  8. Lyden, H. A. Phys. Rev. A 135, A514–A521 (1964).

    Article  Google Scholar 

  9. Huang, B.-L. & Kaviany, M. Phys. Rev. B 77, 125209 (2008).

    Article  Google Scholar 

  10. Mavrokefalos, A. et al. J. Appl. Phys. 105, 104318 (2009).

    Article  Google Scholar 

  11. Hicks, L. D. & Dresselhaus, M. S. Phys. Rev. B 47, 12727–12731 (1993).

    Article  CAS  Google Scholar 

  12. Dresselhaus, M. S. et al. Adv. Mater. 19, 1043–1053 (2007).

    Article  CAS  Google Scholar 

  13. Vineis, C. J., Shakouri, A., Majumdar, A. & Kanatzidis, M. G. Adv. Mater. 22, 3970–3980 (2010).

    Article  CAS  Google Scholar 

  14. Ohta, H. et al. Adv. Mater. 24, 740–744 (2012).

    Article  CAS  Google Scholar 

  15. Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J. & Heath, J. R. Nature Nanotech. 5, 718–721 (2010).

    Article  CAS  Google Scholar 

  16. Tang, J. et al. Nano Lett. 10, 4279–4283 (2010).

    Article  CAS  Google Scholar 

  17. Ravichandran, J. et al. Nature Mater. 13, 168–172 (2014).

    Article  CAS  Google Scholar 

  18. Luckyanova, M. N. et al. Science 338, 936–939 (2012).

    Article  CAS  Google Scholar 

  19. Feser, J. P., Chan, E. M., Majumdar, A., Segalman, R. A. & Urban, J. J. Nano Lett. 13, 2122–2127 (2013).

    Article  CAS  Google Scholar 

  20. Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Nature Mater. 12, 410–415 (2013).

    Article  CAS  Google Scholar 

  21. Losego, M. D. & Cahill, D. G. Nature Mater. 12, 382–384 (2013).

    Article  CAS  Google Scholar 

  22. Vashaee, D. & Shakouri, A. Phys. Rev. Lett. 92, 106103 (2004).

    Article  Google Scholar 

  23. Heremans, J. P., Thrush, C. M. & Morelli, D. T. Phys. Rev. B 70, 115334 (2004).

    Article  Google Scholar 

  24. Zide, J. M. O. et al. Phys. Rev. B 74, 205335 (2006).

    Article  Google Scholar 

  25. Wang, R. Y. et al. Nano Lett. 8, 2283–2288 (2008).

    Article  CAS  Google Scholar 

  26. Lynch, J. et al. ACS Nano 8, 10528–10536 (2014).

    Article  CAS  Google Scholar 

  27. Ibáñez, M. et al. ACS Nano 7, 2573–2586 (2013).

    Article  Google Scholar 

  28. Kovalenko, M. V. et al. J. Am. Chem. Soc. 132, 6686–6695 (2010).

    Article  CAS  Google Scholar 

  29. Scheele, M. et al. ACS Nano 5, 8541–8551 (2011).

    Article  CAS  Google Scholar 

  30. Slack, A. G. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407–440 (CRC Press, 1995).

    Google Scholar 

  31. See, K. C. et al. Nano Lett. 10, 4664–4667 (2010).

    Article  CAS  Google Scholar 

  32. Cho, E. S. et al. Adv. Mater. 27, 5744–5752 (2015).

    Article  CAS  Google Scholar 

  33. Reddy, P., Jang, S.-Y., Segalman, R. A. & Majumdar, A. Science 315, 1568–1571 (2007).

    Article  CAS  Google Scholar 

  34. Tao, N. J. Nature Nanotech. 1, 173–181 (2006).

    Article  CAS  Google Scholar 

  35. Talapin, D. V. & Murray, C. B. Science 310, 86–89 (2005).

    Article  CAS  Google Scholar 

  36. Nag, A. et al. J. Am. Chem. Soc. 134, 13604–13615 (2012).

    Article  CAS  Google Scholar 

  37. Cadavid, D. et al. J. Mater. Chem. A 1, 4864–4870 (2013).

    Article  CAS  Google Scholar 

  38. Voznyy, O., Thon, S. M., Ip, A. H. & Sargent, E. H. J. Phys. Chem. Lett. 4, 987–992 (2013).

    Article  CAS  Google Scholar 

  39. Pettes, M. T., Maassen, J., Jo, I., Lundstrom, M. S. & Shi, L. Nano Lett. 13, 5316–5322 (2013).

    Article  CAS  Google Scholar 

  40. Kovalenko, M. V. et al. ACS Nano 9, 1012–1057 (2015).

    Article  CAS  Google Scholar 

  41. Zervos, H. Thermoelectric Energy Harvesting 2014–2024: Devices, Applications, Opportunities (IDTechEx, 2015); http://go.nature.com/9E5yjZ

    Google Scholar 

  42. LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E. Renew. Sust. Energ. Rev. 32, 313–327 (2014).

    Article  CAS  Google Scholar 

  43. Yazawa, K. & Shakouri, A. Environ. Sci. Technol. 45, 7548–7553 (2011).

    Article  CAS  Google Scholar 

  44. Coates, N. E. et al. Adv. Mater. 25, 1629–1633 (2013).

    Article  CAS  Google Scholar 

  45. Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Nature 466, 474–477 (2010).

    Article  CAS  Google Scholar 

  46. Rupich, S. M., Castro, F. C., Irvine, W. T. M. & Talapin, D. V. Nature Commun. 5, 5045 (2014).

    Article  CAS  Google Scholar 

  47. Bell, L. E. Science 321, 1457–1461 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Urban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urban, J. Prospects for thermoelectricity in quantum dot hybrid arrays. Nature Nanotech 10, 997–1001 (2015). https://doi.org/10.1038/nnano.2015.289

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing