Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Harnessing the damping properties of materials for high-speed atomic force microscopy

Abstract

The success of high-speed atomic force microscopy in imaging molecular motors1, enzymes2 and microbes3 in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever4,5, but further reductions in size will require a fundamental change in the detection method of the microscope6,7,8. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Why HS-AFM imaging in air has been slower than in fluid.
Figure 2: HS-AFM cantilever design from a materials perspective.
Figure 3: Polymer cantilevers and their mechanical response.
Figure 4: HS-AFM tapping-mode imaging in air using small SU-8 cantilevers.

Similar content being viewed by others

References

  1. Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010).

    Article  CAS  Google Scholar 

  2. Igarashi, K. et al. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333, 1279–1282 (2011).

    Article  CAS  Google Scholar 

  3. Fantner, G. E., Barbero, R. J., Gray, D. S. & Belcher, A. M. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nature Nanotech. 5, 280–285 (2010).

    Article  CAS  Google Scholar 

  4. Walters, D. A. et al. Short cantilevers for atomic force microscopy. Rev. Sci. Instrum. 67, 3583–3590 (1996).

    Article  CAS  Google Scholar 

  5. Ando, T. et al. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl Acad. Sci. USA 98, 12468–12472 (2001).

    Article  CAS  Google Scholar 

  6. Li, M., Tang, H. X. & Roukes, M. L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007).

    Article  CAS  Google Scholar 

  7. Antognozzi, M. et al. A new detection system for extremely small vertically mounted cantilevers. Nanotechnology 19, 384002 (2008).

    Article  CAS  Google Scholar 

  8. Sanii, B. & Ashby, P. D. High sensitivity deflection detection of nanowires. Phys. Rev. Lett. 104, 147203 (2010).

    Article  Google Scholar 

  9. Minne, S. C. et al. Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 73, 1742–1744 (1998).

    Article  CAS  Google Scholar 

  10. Mertz, J., Marti, O. & Mlynek, J. Regulation of a microcantilever response by force feedback. Appl. Phys. Lett. 62, 2344–2346 (1993).

    Article  Google Scholar 

  11. Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 64–76 (1998).

    Article  CAS  Google Scholar 

  12. Milhiet, P.-E. et al. Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLoS ONE 5, e13240 (2010).

    Article  Google Scholar 

  13. Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).

    Article  CAS  Google Scholar 

  14. Casuso, I. et al. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nature Nanotech. 7, 525–529 (2012).

    Article  CAS  Google Scholar 

  15. Preiner, J. et al. IgGs are made for walking on bacterial and viral surfaces. Nature Commun. 5, 4394 (2014).

    Article  CAS  Google Scholar 

  16. Genolet, G. et al. Soft, entirely photoplastic probes for scanning force microscopy. Rev. Sci. Instrum. 70, 2398–2401 (1999).

    Article  CAS  Google Scholar 

  17. Sulchek, T. et al. High-speed tapping mode imaging with active Q control for atomic force microscopy. Appl. Phys. Lett. 76, 1473 (2000).

    Article  CAS  Google Scholar 

  18. Sulchek, T., Yaralioglu, G., Quate, C. & Minne, S. Characterization and optimization of scan speed for tapping-mode atomic force microscopy. Rev. Sci. Instrum. 73, 2928–2936 (2002).

    Article  CAS  Google Scholar 

  19. Humphris, A. D. L., Miles, M. J. & Hobbs, J. K. A mechanical microscope: high-speed atomic force microscopy. Appl. Phys. Lett. 86, 034106 (2005).

    Article  Google Scholar 

  20. Rosa-Zeiser, A., Weilandt, E., Hild, S. & Marti, O. The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: pulsed-force mode operation. Meas. Sci. Technol. 8, 1333–1338 (1997).

    Article  CAS  Google Scholar 

  21. Herruzo, E. T., Perrino, A. P. & Garcia, R. Fast nanomechanical spectroscopy of soft matter. Nature Commun. 5, 3126 (2014).

    Article  Google Scholar 

  22. Smith, D. Limits of force microscopy. Rev. Sci. Instrum. 66, 3191–3195 (1995).

    Article  CAS  Google Scholar 

  23. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  24. Rugar, D., Budakian, R., Mamin, H. & Chui, B. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  CAS  Google Scholar 

  25. Kindt, J. H., Fantner, G. E., Thompson, J. B. & Hansma, P. K. Automated wafer-scale fabrication of electron beam deposited tips for atomic force microscopes using pattern recognition. Nanotechnology 15, 1131–1134 (2004).

    Article  CAS  Google Scholar 

  26. Martin, C. et al. Stress and aging minimization in photoplastic AFM probes. Microelectron. Eng. 86, 1226–1229 (2009).

    Article  CAS  Google Scholar 

  27. Fantner, G. E. et al. Components for high speed atomic force microscopy. Ultramicroscopy 106, 881–887 (2006).

    Article  CAS  Google Scholar 

  28. Schitter, G., Allgöwer, F. & Stemmer, A. A new control strategy for high-speed atomic force microscopy. Nanotechnology 15, 108–114 (2004).

    Article  CAS  Google Scholar 

  29. Kodera, N., Sakashita, M. & Ando, T. Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev. Sci. Instrum. 77, 083704 (2006).

    Article  Google Scholar 

  30. Calleja, M. et al. Highly sensitive polymer-based cantilever-sensors for DNA detection. Ultramicroscopy 105, 215–222 (2005).

    Article  CAS  Google Scholar 

  31. Adams, J. D. et al. High-speed imaging upgrade for a standard sample scanning atomic force microscope using small cantilevers. Rev. Sci. Instrum. 85, 093702 (2014).

    Article  Google Scholar 

  32. Burns, D. J., Youcef-Toumi, K. & Fantner, G. E. Indirect identification and compensation of lateral scanner resonances in atomic force microscopes. Nanotechnology 22, 315701 (2011).

    Article  CAS  Google Scholar 

  33. Nievergelt, A. P., Erickson, B. W., Hosseini, N., Adams, J. D. & Fantner, G. E. Studying biological membranes with extended range high-speed atomic force microscopy. Sci. Rep. 5, 11987 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Rashti, P. Odermatt and M. Dukic-Pjanic for their assistance. The authors thank the staff of the Centre of Micronanotechnology (CMi) at EPFL for microfabrication assistance and the Atelier de l'institut de production et robotique at EPFL for the fabrication of research equipment. This work was funded by the European Union's Seventh Framework Programme FP7/2007-2011 under grant agreement 286146 and the European Union's Seventh Framework Programme FP7/2007-2013/ERC grant agreement 307338, and the Swiss National Science Foundation through grants 205321_134786 and 205320_152675.

Author information

Authors and Affiliations

Authors

Contributions

J.D.A. designed experiments, built instrumentation, performed experiments, analysed data and wrote the paper. B.W.E. built instrumentation and performed experiments. J.G. performed experiments. J.B. designed experiments and coordinated research. A.N. built instrumentation and performed experiments. G.E.F. designed experiments, coordinated research and wrote the paper.

Corresponding author

Correspondence to Georg E. Fantner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adams, J., Erickson, B., Grossenbacher, J. et al. Harnessing the damping properties of materials for high-speed atomic force microscopy. Nature Nanotech 11, 147–151 (2016). https://doi.org/10.1038/nnano.2015.254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing