Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging

Subjects

Abstract

Converting nanoparticles or monomeric compounds into larger supramolecular structures by endogenous1,2 or external3,4 stimuli is increasingly popular because these materials are useful for imaging and treating diseases. However, conversion of microstructures to nanostructures is less common. Here, we show the conversion of microbubbles to nanoparticles using low-frequency ultrasound. The microbubble consists of a bacteriochlorophyll–lipid shell around a perfluoropropane gas. The encapsulated gas provides ultrasound imaging contrast and the porphyrins in the shell confer photoacoustic and fluorescent properties. On exposure to ultrasound, the microbubbles burst and form smaller nanoparticles that possess the same optical properties as the original microbubble. We show that this conversion is possible in tumour-bearing mice and could be validated using photoacoustic imaging. With this conversion, our microbubble can potentially be used to bypass the enhanced permeability and retention effect when delivering drugs to tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of porphyrin microbubbles (pMBs) and their micro-to-nano conversion.
Figure 2: Characterization of the conversion of pMBs to pNPs.
Figure 3: Optical spectra of pMBs and resulting pNPs after interaction with conversion ultrasound.
Figure 4: Multimodal imaging of pMBs and resulting pNPs following ultrasound-induced conversion.
Figure 5: Conversion of pMBs to pNPs in vivo in mice.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Motornov, M. et al. ‘Chemical transformers’ from nanoparticle ensembles operated with logic. Nano Lett. 8, 2993–2997 (2008).

    Article  CAS  Google Scholar 

  2. Ng, K. K., Lovell, J. F., Vedadi, A., Hajian, T. & Zheng, G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS Nano 7, 3484–3490 (2013).

    Article  CAS  Google Scholar 

  3. Skirtach, A. G., Antipov, A. A., Shchukin, D. G. & Sukhorukov, G. B. Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir. 20, 6988–6992 (2004).

    Article  CAS  Google Scholar 

  4. Melancon, M. P., Zhou, M. & Li, C. Cancer theranostics with near-infrared light-activatable multimodal nanoparticles. Acc. Chem. Res. 44, 947–956 (2011).

    Article  CAS  Google Scholar 

  5. Kripfgans, O. D., Fowlkes, J. B., Miller, D. L., Eldevik, O. P. & Carson, P. L. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol. 26, 1177–1189 (2000).

    Article  CAS  Google Scholar 

  6. Rapoport, N. et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J. Control. Rel. 153, 4–15 (2011).

    Article  CAS  Google Scholar 

  7. Wei, K. et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97, 473–483 (1998).

    Article  CAS  Google Scholar 

  8. Ferrara, K., Pollard, R. & Borden, M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007).

    Article  CAS  Google Scholar 

  9. Chomas, J. E., Dayton, P., Allen, J., Morgan, K. & Ferrara, K. W. Mechanisms of contrast agent destruction. IEEE Trans. Ultrason. Ferroelec. Freq. Control 48, 232–248 (2001).

    Article  CAS  Google Scholar 

  10. Sboros, V., Moran, C. M., Pye, S. D. & McDicken, W. N. Contrast agent stability: a continuous B-mode imaging approach. Ultrasound Med. Biol. 27, 1367–1377 (2001).

    Article  CAS  Google Scholar 

  11. Huynh, E. & Zheng, G. Engineering multifunctional nanoparticles: all-in-one versus one-for-all. WIREs Nanomed. Nanobiotechnol. 5, 250–265 (2013).

    Article  CAS  Google Scholar 

  12. Huynh, E., Jin, C. S., Wilson, B. C. & Zheng, G. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconj. Chem. 25, 796–801 (2014).

    Article  CAS  Google Scholar 

  13. Huynh, E. et al. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J. Am. Chem. Soc. 134, 16464–16467 (2012).

    Article  CAS  Google Scholar 

  14. Liu, Z. et al. Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials 32, 6155–6163 (2011).

    Article  CAS  Google Scholar 

  15. Kabalnov, A. et al. Dissolution of multicomponent microbubbles in the bloodstream: 2. Experiment. Ultrasound Med. Biol. 24, 751–760 (1998).

    Article  CAS  Google Scholar 

  16. Luan, Y. et al. Lipid shedding from single oscillating microbubbles. Ultrasound Med. Biol. 40, 1834–1846 (2014).

    Article  Google Scholar 

  17. Cox, D. J. & Thomas, J. L. Rapid shrinkage of lipid-coated bubbles in pulsed ultrasound. Ultrasound Med. Biol. 39, 466–474 (2013).

    Article  Google Scholar 

  18. Sengupta, S. & Wurthner, F. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc. Chem. Res. 46, 2498–2512 (2013).

    Article  CAS  Google Scholar 

  19. Wang, L. V. & Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335, 1458–1462 (2012).

    Article  CAS  Google Scholar 

  20. Kopechek, J. A. et al. The impact of bubbles on measurement of drug release from echogenic liposomes. Ultrason. Sonochem. 20, 1121–1130 (2013).

    Article  CAS  Google Scholar 

  21. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Mater. 10, 324–332 (2011).

    Article  CAS  Google Scholar 

  22. Liu, T. W. et al. Inherently multimodal nanoparticle-driven tracking and real-time delineation of orthotopic prostate tumors and micrometastases. ACS Nano 7, 4221–4232 (2013).

    Article  CAS  Google Scholar 

  23. Liu, T. W., MacDonald, T. D., Shi, J., Wilson, B. C. & Zheng, G. Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew. Chem. Int. Ed. 51, 13128–13131 (2012).

    Article  CAS  Google Scholar 

  24. MacDonald, T. D., Liu, T. W. & Zheng, G. An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew. Chem. Int. Ed. 126, 7076–7079 (2014).

    Article  Google Scholar 

  25. Ng, K. K. et al. Stimuli-responsive photoacoustic nanoswitch for in vivo sensing applications. ACS Nano 8, 8363–8373 (2014).

    Article  CAS  Google Scholar 

  26. Jin, C. S., Cui, L., Wang, F., Chen, J. & Zheng, G. Targeting-triggered porphysome nanostructure disruption for activatable photodynamic therapy. Adv. Healthcare Mater. 3, 1240–1249 (2014).

    Article  CAS  Google Scholar 

  27. Jin, C. S., Lovell, J. F., Chen, J. & Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7, 2541–2550 (2013).

    Article  CAS  Google Scholar 

  28. Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 73, 2412–2417 (2013).

    Article  CAS  Google Scholar 

  29. Wang, Y. H. et al. Synergistic delivery of gold nanorods using multifunctional microbubbles for enhanced plasmonic photothermal therapy. Sci. Rep. 4, 5685 (2014).

    Article  CAS  Google Scholar 

  30. Berg, K. et al. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J. Microsc. 218, 133–147 (2005).

    Article  CAS  Google Scholar 

  31. Feshitan, J. A., Chen, C. C., Kwan, J. J. & Borden, M. A. Microbubble size isolation by differential centrifugation. J. Colloid Interface Sci. 329, 316–324 (2009).

    Article  CAS  Google Scholar 

  32. Li, P. et al. Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J. Control. Rel. 162, 349–354 (2012).

    Article  CAS  Google Scholar 

  33. Helfield, B. L., Huo, X., Williams, R. & Goertz, D. E. The effect of preactivation vial temperature on the acoustic properties of definity. Ultrasound Med. Biol. 38, 1298–1305 (2012).

    Article  Google Scholar 

  34. Burlew, M. M., Madsen, E. L., Zagzebski, J. A., Banjavic, R. A. & Sum, S. W. A new ultrasound tissue-equivalent material. Radiology 134, 517–520 (1980).

    Article  CAS  Google Scholar 

  35. Huang, S. L. et al. Physical correlates of the ultrasonic reflectivity of lipid dispersions suitable as diagnostic contrast agents. Ultrasound Med. Biol. 28, 339–348 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Roxin for providing the BChl-lipid, P. McVeigh for technical assistance with the NanoSight LM10, M. Balassu for technical assistance with the animal study and D.M. Charron for help with electron microscopy. The authors also thank R-K. Li for use of his Vevo SoniGene instrument. This work was supported by the Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarship, the Emerging Team Grant on Regenerative Medicine and Nanomedicine co-funded by the CIHR and the Canadian Space Agency, the Natural Sciences and Engineering Research Council of Canada, the Ontario Institute for Cancer Research, the International Collaborative R&D Project of the Ministry of Knowledge Economy, South Korea, the Joey and Toby Tanenbaum/Brazilian Ball Chair in Prostate Cancer Research, the Canada Foundation for Innovation and the Princess Margaret Cancer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

E.H. and G.Z. conceived the idea, interpreted the data and wrote the manuscript. E.H., D.E.G. and G.Z. designed the experiments. E.H. carried out size characterization, light microscopy, optical characterization and imaging studies. B.Y.C.L., B.L.H. and E.H. performed acoustic characterization. M.S. and E.H. carried out electron microscopy. E.H. and C.S.J. carried out animal imaging experiments. J.G. and E.R.M. carried out flow field-flow fractionation. E.H., D.E.G., B.C.W. and G.Z. edited the manuscript.

Corresponding author

Correspondence to Gang Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, E., Leung, B., Helfield, B. et al. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nature Nanotech 10, 325–332 (2015). https://doi.org/10.1038/nnano.2015.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing