Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strongly enhanced charge-density-wave order in monolayer NbSe2

Abstract

Two-dimensional materials possess very different properties from their bulk counterparts. While changes in single-particle electronic properties have been investigated extensively1,2,3, modifications in the many-body collective phenomena in the exact two-dimensional limit remain relatively unexplored. Here, we report a combined optical and electrical transport study on the many-body collective-order phase diagram of NbSe2 down to a thickness of one monolayer. Both the charge density wave and the superconducting phase have been observed down to the monolayer limit. The superconducting transition temperature decreases on lowering the layer thickness, but the newly observed charge-density-wave transition temperature increases from 33 K in the bulk to 145 K in the monolayer. Such highly unusual enhancement of charge density waves in atomically thin samples can be understood to be a result of significantly enhanced electron–phonon interactions in two-dimensional NbSe2 (ref. 4) and is supported by the large blueshift of the collective amplitude vibration observed in our experiment. Our results open up a new window for search and control of collective phases of two-dimensional matter, as well as expanding the functionalities of these materials for electronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterizations of atomically thin NbSe2 samples.
Figure 2: Temperature dependence of Raman spectra of bulk and two-dimensional NbSe2.
Figure 3: Many-body phase diagram of two-dimensional NbSe2.
Figure 4: Thickness dependence of the amplitude mode frequency and electron–phonon coupling in NbSe2.

Similar content being viewed by others

References

  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  2. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  3. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  4. Calandra, M., Mazin, I. I. & Mauri, F. Effect of dimensionality on the charge-density wave in few-layer NbSe2 . Phys. Rev. B 80, 241108 (2009).

    Article  Google Scholar 

  5. Grüner, G. Density Waves In Solids (Westview, 2009).

    Google Scholar 

  6. Rossnagel, K. On the origin of charge-density waves in select layered transition-metal dichalcogenides. J. Phys. Condens. Matter 23, 213001 (2011).

    Article  CAS  Google Scholar 

  7. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nature Phys. 8, 871–876 (2012).

    Article  CAS  Google Scholar 

  8. Joe, Y. I. et al. Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2 . Nature Phys. 10, 421–425 (2014).

    Article  CAS  Google Scholar 

  9. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  Google Scholar 

  10. Goli, P., Khan, J., Wickramaratne, D., Lake, R. K. & Balandin, A. A. Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2 . Nano Lett. 12, 5941–5945 (2012).

    Article  CAS  Google Scholar 

  11. Yu, Y. J. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2 . Nature Nanotech. 10, 270–276 (2015).

    Article  CAS  Google Scholar 

  12. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides (Reprinted from Adv. Phys., 32, 882 (1974)). Adv. Phys. 50, 1171–1248 (2001).

    Article  Google Scholar 

  13. Soto, F. et al. Electric and magnetic characterization of NbSe2 single crystals: anisotropic superconducting fluctuations above TC . Physica C 460–462, 789–790 (2007).

    Article  CAS  Google Scholar 

  14. McMillan, W. L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187–1196 (1975).

    Article  CAS  Google Scholar 

  15. Rice, T. M. & Scott, G. K. New mechanism for a charge-density-wave instability. Phys. Rev. Lett. 35, 120–123 (1975).

    Article  CAS  Google Scholar 

  16. Straub, Th. et al. Charge-density-wave mechanism in 2H-NbSe2: photoemission results. Phys. Rev. Lett. 82, 4504–4507 (1999).

    Article  CAS  Google Scholar 

  17. Valla, T. et al. Quasiparticle spectra, charge-density waves, superconductivity, and electron–phonon coupling in 2H-NbSe2 . Phys. Rev. Lett. 92, 086401 (2004).

    Article  CAS  Google Scholar 

  18. Kiss, T. et al. Charge-order-maximized momentum-dependent superconductivity. Nature Phys. 3, 720–725 (2007).

    Article  CAS  Google Scholar 

  19. Weber, F. et al. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2 . Phys. Rev. Lett. 107, 107403 (2011).

    Article  CAS  Google Scholar 

  20. Arguello, C. J. et al. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2 . Phys. Rev. Lett. 114, 037001 (2015).

    Article  CAS  Google Scholar 

  21. Rahn, D. J. et al. Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1 K. Phys. Rev. B 85, 224532 (2012).

    Article  Google Scholar 

  22. Tsang, J. C., Smith, J. E. & Shafer, M. W. Raman spectroscopy of soft modes at the charge-density-wave phase transition in 2H-NbSe2 . Phys. Rev. Lett. 37, 1407–1410 (1976).

    Article  CAS  Google Scholar 

  23. Tan, P. H. et al. The shear mode of multilayer graphene. Nature Mater. 11, 294–300 (2012).

    Article  CAS  Google Scholar 

  24. Klein, M. V. Theory of two-phonon Raman scattering in transition metals and compounds. Phys. Rev. B 24, 4208–4223 (1981).

    Article  CAS  Google Scholar 

  25. Maldague, P. F. & Tsang, J. C. in Proceedings of the International Conference on Lattice Dynamics, Paris, 1977 (ed. Balkanski, M.) 602 (Flammarion, 1978).

    Google Scholar 

  26. Sooryakumar, R. & Klein, M. V. Raman scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett. 45, 660–662 (1980).

    Article  CAS  Google Scholar 

  27. McMillan, W. L. Microscopic model of charge-density waves in 2H-TaSe2 . Phys. Rev. B 16, 643–650 (1977).

    Article  CAS  Google Scholar 

  28. Harper, J. M. E., Geballe, T. H. & Disalvo, F. J. Thermal-properties of layered transition-metal dichalcogenides at charge-density-wave transitions. Phys. Rev. B 15, 2943–2951 (1977).

    Article  CAS  Google Scholar 

  29. Frindt, R. F. Superconductivity in ultrathin NbSe2 layers. Phys. Rev. Lett. 28, 299–301 (1972).

    Article  CAS  Google Scholar 

  30. Staley, N. E. et al. Electric field effect on superconductivity in atomically thin flakes of NbSe2 . Phys. Rev. B 80, 184505 (2009).

    Article  Google Scholar 

  31. Chu, C. W., Diatschenko, V., Huang, C. Y. & DiSalvo, F. J. Pressure effect on the charge-density-wave formation in 2H-NbSe2 and correlation between structural instabilities and superconductivity in unstable solids. Phys. Rev. B 15, 1340–1342 (1977).

    Article  CAS  Google Scholar 

  32. Schneider, T., Gedik, Z. & Ciraci, S. From low to high-temperature superconductivity: a dimensional crossover phenomenon? a finite size effect? Z. Phys. B 83, 313–321 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (award no. DESC0012635), for the development of two-dimensional NbSe2 samples and devices, and from the National Science Foundation (NSF, awards nos. DMR-1106225 and DMR-1410407) for the development of the low-temperature terahertz Raman spectrometer. The authors also acknowledge support from the NSF MRSEC (award no. DMR-1420451, Z.W.) and the MRI-2D Center at Penn State University (X.X.). The work in Lausanne was supported by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

X.X., J.S. and K.F.M. conceived and designed the experiments, analysed the data and co-wrote the paper. X.X., L.Z., Z.W. and K.F.M. performed the experiments. H.B. and L.F. contributed bulk NbSe2 crystals. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jie Shan or Kin Fai Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1703 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Zhao, L., Wang, Z. et al. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nature Nanotech 10, 765–769 (2015). https://doi.org/10.1038/nnano.2015.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing