Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films

Abstract

Local perturbations in complex oxides, such as domain walls1,2, strain3,4 and defects5,6, are of interest because they can modify the conduction or the dielectric and magnetic response, and can even promote phase transitions. Here, we show that the interaction between different types of local perturbations in oxide thin films is an additional source of functionality. Taking SrMnO3 as a model system, we use nonlinear optics to verify the theoretical prediction that strain induces a polar phase, and apply density functional theory to show that strain simultaneously increases the concentration of oxygen vacancies. These vacancies couple to the polar domain walls, where they establish an electrostatic barrier to electron migration. The result is a state with locally structured room-temperature conductivity consisting of conducting nanosized polar domains encased by insulating domain boundaries, which we resolve using scanning probe microscopy. Our ‘nanocapacitor’ domains can be individually charged, suggesting stable capacitance nanobits with a potential for information storage technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epitaxy and polar order of strained SrMnO3 films.
Figure 2: Patterned conductance in strained SrMnO3 films.
Figure 3: Temperature dependence of the conductance pattern.
Figure 4: Polar domains as nanocapacitors.
Figure 5: Electronic structure calculations of oxygen vacancy formation.

Similar content being viewed by others

References

  1. Salje, E. K. H. & Zhang, H. L. Domain boundary engineering. Phase Trans. 82, 452–469 (2009).

    Article  CAS  Google Scholar 

  2. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    Article  CAS  Google Scholar 

  3. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article  CAS  Google Scholar 

  4. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466, 954–958 (2010).

    Article  CAS  Google Scholar 

  5. Kalinin, S. V., Johnson, C. Y. & Bonnel, D. A. Domain polarity and temperature induced potential inversion on the BaTiO3 (100) surface. J. Appl. Phys. 91, 3816–3823 (2002).

    Article  CAS  Google Scholar 

  6. Aschauer, U., Pfenninger, R., Selbach, S. M., Grande, T. & Spaldin, N. A. Strain-controlled oxygen vacancy formation and ordering in CaMnO3 . Phys. Rev. B 88, 054111 (2013).

    Article  Google Scholar 

  7. Bhattacharjee, S., Bousquet, E. & Ghosez, P. Engineering multiferroism in CaMnO3 . Phys. Rev. Lett. 102, 117602 (2009).

    Article  Google Scholar 

  8. Lee, J. H. & Rabe, M. K. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010).

    Article  Google Scholar 

  9. Rondinelli, J. M., Eidelson, A. S. & Spaldin, N. A. Non-d0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3 . Phys. Rev. B 79, 205119 (2009).

    Article  Google Scholar 

  10. Sakai, H. et al. Displacement-type ferroelectricity with off center magnetic ions in perovskite Sr1–xBaxMnO3 . Phys. Rev. Lett. 107, 137601 (2011).

    Article  CAS  Google Scholar 

  11. Kobayashi, S. et al. Labyrinth-type domain structure of heteroepitaxial SrMnO2.5 film. Appl. Phys. Lett. 102, 231911 (2013).

    Article  Google Scholar 

  12. Giovannetti, G., Kumar, S., Ortix, C., Capone, M. & van den Brink, J. Microscopic origin of large negative magnetoelectric coupling in Sr1/2Ba1/2MnO3 . Phys. Rev. Lett. 109, 107601 (2012).

    Article  Google Scholar 

  13. Fiebig, M., Fröhlich, D., Lottermoser, Th. & Maat, M. Probing of ferroelectric surface and bulk domains in ferroelectric RMnO3 (R=Y, Ho) by second harmonic generation. Phys. Rev. B 66, 144102 (2002).

    Article  Google Scholar 

  14. Johann, F., Hoffmann, Á. & Soergel, E. Impact of electrostatic forces in contact-mode scanning force microscopy. Phys. Rev. B 81, 094109 (2010).

    Article  Google Scholar 

  15. Rørmark, L., Wiik, K., Stølen, S. & Grande, T. Oxygen stoichiometry and structural properties of La(1–x)AxMnO3+− δ (A= Ca or Sr and 0 ≤ x ≤ 1). J. Mater. Chem. 12, 1058–1067 (2002).

    Article  Google Scholar 

  16. Scheiber, P. et al. (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface. Phys. Rev. Lett. 109, 136103 (2012).

    Article  Google Scholar 

  17. Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).

    Article  CAS  Google Scholar 

  18. Chmaissem, O. et al. Relationship between structural parameters and the Néel temperature in Sr1–xCaxMnO3 (0 ≤ x ≤ 1) and Sr1–yBayMnO3 (y ≤ 0.2). Phys. Rev. B 64, 134412 (2001).

    Article  Google Scholar 

  19. Kobayashi, S. et al. Cation off-stoichiometric SrMnO3-δ thin film grown by pulsed laser deposition. J. Mater. Sci. 46, 4354–4360 (2011).

    Article  CAS  Google Scholar 

  20. Fiebig, M., Pavlov, V. & Pisarev, R. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals. J. Opt. Soc. Am. B 22, 96–118 (2005).

    Article  CAS  Google Scholar 

  21. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  22. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  23. Hong, J., Stroppa, A., Íñiguez, J., Picozzi, S. & Vanderbilt, D. Spin-phonon coupling effects in transition-metal perovskites: A DFT + U and hybrid-functional study. Phys. Rev. B 85, 054417 (2012).

    Article  Google Scholar 

  24. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  25. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  26. Lee, J. H. & Rabe, M. K. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010).

    Article  Google Scholar 

  27. Aschauer, U., Pfenninger, R., Selbach, S. M., Grande, T. & Spaldin, N. A. Strain-controlled oxygen vacancy formation and ordering in CaMnO3 . Phys. Rev. B 88, 054111 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Helmholtz-Zentrum Berlin for the allocation of synchrotron radiation beamtime and C.M. Schneider for support, as well as A. Weber of the Paul Scherrer Institute for providing reference samples for the EFM measurements. The authors thank J. Rupp and M. Kubicek for advice on the oxygen vacancy dynamics in oxide films. M.F., D.M. and M.L. acknowledge funding from grant ‘ETH-06 12-2’ and from SNF proposal no. 200021-149192. The authors acknowledge funding through the SNF R’equip Program (no. 206021-144988). M.T and C.B. thank the ETH FIRST lab for granting access to the XRD characterization platform. Financial support from Spanish Ministerio de Economía y Competitividad through projects MAT2011-27553-C02, MAT2012-38213-C02-01, MAT2014-51982-C2 and from Regional Gobierno de Aragón through project E26 is acknowledged. The TEM, XPS and XRD work was conducted in the Laboratorio de Microscopías Avanzadas at the Instituto de Nanociencia de Aragón – Universidad de Zaragoza, which the authors acknowledge for offering access to instruments and expertise.

Author information

Authors and Affiliations

Authors

Contributions

C.B. performed and analysed the SHG measurements. L.M. grew the samples and characterized them, together with C.M., J.B., E.L. and M.T., by XRD and STEM. M.L. and C.B. performed EFM. D.M. and I.P.K. carried out LEEM. U.A. performed the DFT calculations. P.A.A., J.A.P., N.A.S. and M.F. supervised the project.

Corresponding author

Correspondence to Manfred Fiebig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becher, C., Maurel, L., Aschauer, U. et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nature Nanotech 10, 661–665 (2015). https://doi.org/10.1038/nnano.2015.108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing