Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide

Abstract

Strong interactions, or correlations, between the d or f electrons in transition-metal oxides lead to various types of metal–insulator transitions that can be triggered by external parameters such as temperature, pressure, doping, magnetic fields and electric fields. Electric-field-induced metallization of such materials from their insulating states could enable a new class of ultrafast electronic switches and latches. However, significant questions remain about the detailed nature of the switching process. Here, we show, in the canonical metal-to-insulator transition system V2O3, that ultrafast voltage pulses result in its metallization only after an incubation time that ranges from 150 ps to many nanoseconds, depending on the electric field strength. We show that these incubation times can be accounted for by purely thermal effects and that intrinsic electronic-switching mechanisms may only be revealed using larger electric fields at even shorter timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and d.c. switching data for electrically driven MITs in a 125 nm × 470 nm V2O3 device.
Figure 2: Poole–Frenkel conduction.
Figure 3: Numerically simulated device temperature versus time predictions for applied voltages near threshold, assuming a heat dissipation parameter λ = 2.0 × 10–7 W K–1.
Figure 4: Experimentally measured threshold voltages versus temperature for the same device as in Figs 1 and  2.
Figure 5: Experimental switching delay times, or ‘incubation times’, compared with numerical simulation predictions from a thermal switching model.

Similar content being viewed by others

References

  1. Mott, N. F. Metal Insulator Transitions 2nd edn (Taylor & Francis, 1990).

    Book  Google Scholar 

  2. Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article  CAS  Google Scholar 

  3. Dernier, P. D. & Marezio, M. Crystal structure of the low-temperature antiferromagnetic phase of V2O3 . Phys. Rev. B 2, 3771–3776 (1970).

    Article  Google Scholar 

  4. McWhan, D. B., Menth, A., Remeika, J. P., Brinkman, W. F. & Rice, T. M. Metal–insulator transitions in pure and doped V2O3 . Phys. Rev. B 7, 1920–1931 (1973).

    Article  CAS  Google Scholar 

  5. Pfalzer, P., Obermeier, G., Klemm, M., Horn, S. & denBoer, M. L. Structural precursor to the metal–insulator transition in V2O3 . Phys. Rev. B 73, 144106 (2006).

  6. Laad, M. S., Craco, L. & Müller-Hartmann, E. Orbital-selective insulator–metal transition in V2O3 under external pressure. Phys. Rev. B 73, 045109 (2006).

  7. Rodolakis, F. et al. Inequivalent routes across the Mott transition in V2O3 explored by X-ray absorption. Phys. Rev. Lett. 104, 047401 (2010).

  8. Held, K., Keller, G., Eyert, V., Vollhardt, D. & Anisimov, V. I. Mott–Hubbard metal–insulator transition in paramagnetic V2O3: an LDA+DMFT(QMC) study. Phys. Rev. Lett. 86, 5345–5348 (2001).

    Article  CAS  Google Scholar 

  9. Ahn, C. H., Triscone, J-M. & Mannhart, J. Electric field effect in correlated oxide systems. Nature 424, 1015–1018 (2003).

    Article  CAS  Google Scholar 

  10. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  11. Shaw, M. P. Thermal instability—the precursor to switching in inhomogeneous thin films. IEEE Trans. Electron. Dev. ED-26, 1766–1771 (1979).

    Article  Google Scholar 

  12. Adler, D., Henisch, H. K. & Mott, N. The mechanism of threshold switching in amorphous alloys. Rev. Mod. Phys. 50, 209–220 (1978).

    Article  CAS  Google Scholar 

  13. Sugimoto, N., Onoda, S. & Nagaosa, N. Field-induced metal–insulator transition and switching phenomenon in correlated insulators. Phys. Rev. B 78, 155104 (2008).

  14. Eckstein, M., Oka, T. & Werner, P. Dielectric breakdown of Mott insulators in dynamical mean-field theory. Phys. Rev. Lett. 105, 146404 (2010).

  15. Heidrich-Meisner, F. et al. Non-equilibrium electronic transport in a one-dimensional Mott insulator. Phys. Rev. B 82, 205110 (2010).

  16. Stefanovich, G., Pergament, A. & Stefanovich, D. Electrical switching and Mott transition in VO2 . J. Phys. 12, 8837–8845 (2000).

    CAS  Google Scholar 

  17. Okimura, K. & Sakai, J. Time-dependent characteristics of electric field-induced metal–insulator transition of planer VO2/c-Al2O3 structure. Jpn J. Appl. Phys. 46, L813–L816 (2007).

    Article  CAS  Google Scholar 

  18. Gopalakrishnan, G., Ruzmetov, D. & Ramanathan, S. On the triggering mechanism for the metal–insulator transition in thin film VO2 devices: electric field versus thermal effects. J. Mater. Sci. 44, 5345–5353 (2009).

    Article  CAS  Google Scholar 

  19. Zhong, X., Zhang, X., Gupta, A. & LeClair, P. Avalanche breakdown in microscale VO2 structures. J. Appl. Phys. 110, 084516 (2011).

  20. Zimmers, A. et al. Role of thermal heating on the voltage induced insulator–metal transition in VO2 . Phys. Rev. Lett. 110, 056601 (2013).

  21. Duchene, J., Terraillon, M., Pailly, P. & Adam, G. Filamentary conduction in VO2 coplanar thin-film devices. Appl. Phys. Lett. 19, 115–117 (1971).

    Article  CAS  Google Scholar 

  22. Sakai, J. & Kurisu, M. Effect of pressure on the electric-field-induced resistance switching of VO2 planar-type junctions. Phys. Rev. B 78, 033106 (2008).

  23. Zhao, Y., Hao, J., Chen, C. & Fan, Z. Electrically controlled metal–insulator transition process in VO2 thin films. J. Phys. 24, 035601 (2012).

  24. Brockman, J. et al. Increased metal–insulator transition temperatures in epitaxial thin films of V2O3 prepared in reduced oxygen environments. Appl. Phys. Lett. 98, 152105 (2011).

    Article  Google Scholar 

  25. Brockman, J., Samant, M. G., Roche, K. P. & Parkin, S. S. P. Substrate-induced disorder in V2O3 thin films grown on annealed c-plane sapphire substrates. Appl. Phys. Lett. 101, 051606 (2012).

  26. Taketa, Y., Kato, F., Nitta, M. & Haradome, M. New oscillation phenomena in VO2 crystals. Appl. Phys. Lett. 27, 212–214 (1975).

    Article  CAS  Google Scholar 

  27. Lee, Y. W. et al. Metal–insulator transition-induced electrical oscillation in vanadium dioxide thin film. Appl. Phys. Lett. 92, 162903 (2008).

    Article  Google Scholar 

  28. Frenkel, J. On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647–648 (1938).

    Article  Google Scholar 

  29. Jonscher, A. K. Electronic properties of amorphous dielectric films. Thin Solid Films 1, 213–234 (1967).

    Article  CAS  Google Scholar 

  30. Samsonov, G. The Oxide Handbook 2nd edn (Ifi/Plenum, 1982).

    Book  Google Scholar 

  31. Wenger, L. E. & Keesom, P. H. Low temperature specific heat of (V1– xCrx)2O3 and (V1– xAlx)2O3 . Phys. Rev. B 12, 5288–5296 (1975).

    Article  CAS  Google Scholar 

  32. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  CAS  Google Scholar 

  33. Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    Article  CAS  Google Scholar 

  34. Ketchen, M. B. et al. Generation of subpicosecond electrical pulses on coplanar transmission lines. Appl. Phys. Lett. 48, 751–753 (1986).

    Article  Google Scholar 

  35. Sakai, K. & Tani, M. in Terahertz Optoelectronics (ed. Sakai K.) 1–30 (Topics in Applied Physics 97, Springer, 2005).

    Book  Google Scholar 

  36. Cavalleri, A. et al. Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption. Phys. Rev. Lett. 95, 067405 (2005).

  37. Kübler, C. et al. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2 . Phys. Rev. Lett. 99, 116401 (2007).

Download references

Acknowledgements

The authors acknowledge the work of the IBM Almaden Machine Shop for the construction of our deposition hardware and A. Kellock for performing Rutherford backscattering measurements on many of our samples.

Author information

Authors and Affiliations

Authors

Contributions

J.S.B. grew the vanadium oxide films, carried out the electrical measurements, and performed the numerical simulations. L.G. assisted with experimentation and data analysis. B.H. and C.R. fabricated the devices. M.G.S. and K.P.R. contributed expertise and assistance in thin-film deposition and characterization. S.S.P.P. and J.S.B conceived the experiment and wrote the manuscript together. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stuart S. P. Parkin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 2492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockman, J., Gao, L., Hughes, B. et al. Subnanosecond incubation times for electric-field-induced metallization of a correlated electron oxide. Nature Nanotech 9, 453–458 (2014). https://doi.org/10.1038/nnano.2014.71

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing