Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin blockade and exchange in Coulomb-confined silicon double quantum dots

Abstract

Electron spins confined to phosphorus donors in silicon are promising candidates as qubits1 because of their long coherence times, exceeding seconds in isotopically purified bulk silicon2. With the recent demonstrations of initialization, readout3 and coherent manipulation4 of individual donor electron spins, the next challenge towards the realization of a Si:P donor-based quantum computer is the demonstration of exchange coupling1,5,6 in two tunnel-coupled phosphorus donors. Spin-to-charge conversion3,7 via Pauli spin blockade8,9, an essential ingredient for reading out individual spin states, is challenging in donor-based systems due to the inherently large donor charging energies (45 meV), requiring large electric fields (>1 MV m–1) to transfer both electron spins onto the same donor10. Here, in a carefully characterized double donor-dot device, we directly observe spin blockade of the first few electrons and measure the effective exchange interaction between electron spins in coupled Coulomb-confined systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A few-donor double quantum dot.
Figure 2: Spectroscopy of a donor-based few-electron double quantum dot.
Figure 3: Comparison of measured binding energy spectra of few-donor double quantum dots with self-consistent atomistic TB calculations.
Figure 4: Observation of spin blockade.

Similar content being viewed by others

References

  1. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  CAS  Google Scholar 

  2. Tyryshkin, A. M. et al. Electron spin coherence exceeding seconds in high-purity silicon. Nature Mater. 11, 143–147 (2012).

    Article  CAS  Google Scholar 

  3. Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

    Article  CAS  Google Scholar 

  4. Pla, J. J. et al. A single-atom electron spin qubit in silicon. Nature 489, 541–545 (2012).

    Article  CAS  Google Scholar 

  5. Koiller, B., Hu, X. & Das Sarma, S. Exchange in silicon-based quantum computer architecture. Phys. Rev. Lett. 88, 027903 (2001).

    Article  Google Scholar 

  6. Wellard, C. J. et al. Electron exchange coupling for single-donor solid-state spin qubits. Phys. Rev. B 68, 195209 (2003).

    Article  Google Scholar 

  7. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  CAS  Google Scholar 

  8. Ono, K., Austing, D. G., Tokura, Y. & Tarucha, S. Current rectification by Pauli exclusion in a weakly coupled double quantum dot system. Science 297, 1313–1317 (2002).

    Article  CAS  Google Scholar 

  9. Johnson, A. C., Petta, J. R., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot. Phys. Rev. B 72, 165308 (2005).

    Article  Google Scholar 

  10. Fang, A., Chang, Y. C. & Tucker, J. R. Effects of J-gate potential and uniform electric field on a coupled donor pair in Si for quantum computing. Phys. Rev. B 66, 155331 (2002).

    Article  Google Scholar 

  11. Hollenberg, L. C. L., Greentree, A. D., Fowler, A. G. & Wellard, C. J. Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006).

    Article  Google Scholar 

  12. Büch, H., Mahapatra, S., Rahman, R., Morello, A. & Simmons, M. Y. Spin readout and addressability of phosphorus-donor clusters in silicon. Nature Commun. 4, 2017 (2013).

    Article  Google Scholar 

  13. Weber, B., Mahapatra, S., Watson, T. F. & Simmons, M. Y. Engineering independent electrostatic control of atomic-scale (4 nm) silicon double quantum dots. Nano Lett. 12, 4001–4006 (2012).

    Article  CAS  Google Scholar 

  14. Greentree, A. D., Cole, J. H., Hamilton, A. R. & Hollenberg, L. C. L. Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B 70, 235317 (2004).

    Article  Google Scholar 

  15. Bose, S. Quantum communication through spin chain dynamics: an introductory overview. Contemp. Phys. 48, 13 (2007).

    Article  CAS  Google Scholar 

  16. Skinner, A. J., Davenport, M. E. & Kane, B. E. Hydrogenic spin quantum computing in silicon: a digital approach. Phys. Rev. Lett. 90, 087901 (2003).

    Article  CAS  Google Scholar 

  17. Shaji, N. et al. Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot. Nature Phys. 4, 540–544 (2008).

    Article  CAS  Google Scholar 

  18. Borselli, M. G. et al. Measurement of valley splitting in high-symmetry Si/SiGe quantum dots. Appl. Phys. Lett. 98, 123118 (2011).

    Article  Google Scholar 

  19. Roche, B. et al. Detection of a large valley-orbit splitting in silicon with two-donor spectroscopy. Phys. Rev. Lett. 108, 206812 (2012).

    Article  CAS  Google Scholar 

  20. Dupont-Ferrier, E. et al. Coherent coupling of two dopants in a silicon nanowire probed by Landau-Zener-Stückelberg interferometry. Phys. Rev. Lett. 110, 136802 (2013).

    Article  CAS  Google Scholar 

  21. Warschkow, O. et al. Phosphine adsorption and dissociation on the Si(001) surface: An ab initio survey of structures. Phys. Rev. B 72, 125328 (2005).

    Article  Google Scholar 

  22. Weber, B. et al. Ohm's law survives to the atomic scale. Science 335, 64–67 (2012).

    Article  CAS  Google Scholar 

  23. Fuhrer, A. et al. Few electron double quantum dots in InAs/InP nanowire heterostructures. Nano Lett. 7, 243–246 (2006).

    Article  Google Scholar 

  24. Klimeck, G. et al. Atomistic simulation of realistically sized nanodevices using NEMO 3-D – part I: models and benchmarks. IEEE Trans. Electron. Dev. 54, 2079–2089 (2007).

    Article  CAS  Google Scholar 

  25. Rahman, R. et al. High precision quantum control of single donor spins in silicon. Phys. Rev. Lett. 99, 036403 (2007).

    Article  Google Scholar 

  26. Fuechsle, M. et al. A single-atom transistor. Nature Nanotech. 7, 242–246 (2012).

    Article  CAS  Google Scholar 

  27. Hada, Y. & Eto, M. Electronic states in silicon quantum dots: multivalley artificial atoms. Phys. Rev. B 68, 155322 (2003).

    Article  Google Scholar 

  28. Lim, W. H., Yang, C. H., Zwanenburg, F. A. & Dzurak, A. S. Spin filling of valley-orbit states in a silicon quantum dot. Nanotechnology 22, 335704 (2011).

    Article  CAS  Google Scholar 

  29. Nazarov, Y. V. Quantum interference, tunnel junctions and resonant tunneling interferometer. Physica B 189, 57 (1993).

    Article  CAS  Google Scholar 

  30. Badrutdinov, A., Huang, S., Kono, K., Ono, K. & Tayurskii, D. Cotunneling effects in GaAs vertical double quantum dots. JETP Lett. 93, 199–202 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (project no. CE110001027) and the US National Security Agency and US Army Research Office (contract no. W911NF-08-1-0527). Computational resources on nanoHUB.org, funded by the National Science Foundation (grant no. EEC-0228390), were used extensively. M.Y.S. acknowledges an ARC Laureate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

B.W. and T.F.W. carried out the fabrication. B.W. performed measurements. B.W., Y.H.M.T., S.M., T.F.W., H.R., R.R., L.H., G.K. and M.Y.S. analysed the data. Y.H.M.T., H.R. and R.R. carried out the calculations. M.Y.S. planned the project. G.K. planned the theoretical modelling approach. B.W. and M.Y.S. prepared the manuscript.

Corresponding author

Correspondence to Michelle Y. Simmons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 723 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, B., Tan, Y., Mahapatra, S. et al. Spin blockade and exchange in Coulomb-confined silicon double quantum dots. Nature Nanotech 9, 430–435 (2014). https://doi.org/10.1038/nnano.2014.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing