Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The case for plasmon-derived hot carrier devices

Plasmons' progeny are invading the territory currently commanded by semiconductors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principal processes that contribute to the overall efficiency of a plasmonic artificial photosynthesis device.

References

  1. Lewis, N. S. & Nocera, D. G. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  2. Fujishima, A. & Honda, K. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  3. Leitner, W. Angew. Chem. Int. Ed. 34, 2207–2221 (1995).

    Article  CAS  Google Scholar 

  4. Morris, A. J., Meyer, G. J. & Fujita, E. Acc. Chem. Res. 42, 1983–1994 (2009).

    Article  CAS  Google Scholar 

  5. Gerischer, H. Faraday Discuss. Chem. Soc. 70, 137–151 (1980).

    Article  Google Scholar 

  6. Brongersma, M. Nature Nanotech. 10, 25–34 (2015).

    Article  CAS  Google Scholar 

  7. Wang, F. & Melosh, N. A. Nano Lett. 11, 5426–5430 (2011).

    Article  CAS  Google Scholar 

  8. Bohm, D. & Pines, D. Phys. Rev. 92, 609–625 (1953).

    Article  CAS  Google Scholar 

  9. Tomonaga, S. Prog. Theor. Phys. 5, 544–568 (1950).

    Article  Google Scholar 

  10. Link, S. & El-Sayed, M. A. J. Phys. Chem. B 103, 4212–4217 (1999).

    Article  CAS  Google Scholar 

  11. Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G. & Feldmann, J. Phys. Rev. Lett. 88, 077402 (2002).

    Article  Google Scholar 

  12. Link, S. & El-Sayed, M. A. Int. Rev. Phys. Chem. 19, 409–453 (2000).

    Article  CAS  Google Scholar 

  13. Masuda, H. & Fukuda, K. Science 268, 1466–1468 (1995).

    Article  CAS  Google Scholar 

  14. Ritchie, R. H. Phys. Rev. 106, 874–881 (1957).

    Article  CAS  Google Scholar 

  15. Manjavacas, A., Thongrattanasiri, S. & García de Abajo, F. J. Nanophotonics 2, 139–151 (2013).

    Article  CAS  Google Scholar 

  16. Huang, T. & Murray, R. W. Langmuir 18, 7077–7081 (2002).

    Article  CAS  Google Scholar 

  17. http://50.87.149.212/kb/gold/optical-properties

  18. Wiedmann, J. & Penzkofer, A. Nuovo Cim. 63B, 459 (1981).

    Article  CAS  Google Scholar 

  19. Bethe, H. A. & Salpeter, E. E. in Quantum Mechanics and Two Electron Atoms Section 61 (Springer, 1957).

    Book  Google Scholar 

  20. Nishijima, Y., Ueno, K., Yokota, Y., Murakoshi, K. & Misawa, H. J. Phys. Chem. Lett. 1, 2031–2036 (2010).

    Article  CAS  Google Scholar 

  21. Kenney, M. J. et al. Science 342, 836–840 (2013).

    Article  CAS  Google Scholar 

  22. Brus, L. Acc. Chem. Res. 41, 1742–1749 (2008).

    Article  CAS  Google Scholar 

  23. Harbich, W., Fedrigo, S. & Buttet, J. Chem. Phys. Lett. 195, 613–617 (1992).

    Article  CAS  Google Scholar 

  24. Tiggesbäumker, J., Köller, L., Meiwes-Broer, K-H. & Liebsch, A. Phys. Rev. A 48, R1749–R1752 (1993).

    Article  Google Scholar 

  25. Bonačić-Koutecky, V., Veyret, V. & Mitrić, R. J. Chem. Phys. 115, 10450–10460 (2001).

    Article  Google Scholar 

  26. Morton, S. M., Silverstein, D. W. & Jensen, L. Chem. Rev. 111, 3962–3994 (2011).

    Article  CAS  Google Scholar 

  27. Jensen, L., Aikens, C. M. & Schatz, G. C. Chem. Soc. Rev. 37, 1061–1073 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Moskovits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskovits, M. The case for plasmon-derived hot carrier devices. Nature Nanotech 10, 6–8 (2015). https://doi.org/10.1038/nnano.2014.280

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing