Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor

Subjects

Abstract

Blood contains a range of protein biomarkers that could be used in the early detection of disease. To achieve this, however, requires sensors capable of detecting (with high reproducibility) biomarkers at concentrations one million times lower than the concentration of the other blood proteins. Here, we show that a sandwich assay that combines mechanical and optoplasmonic transduction can detect cancer biomarkers in serum at ultralow concentrations. A biomarker is first recognized by a surface-anchored antibody and then by an antibody in solution that identifies a free region of the captured biomarker. This second antibody is tethered to a gold nanoparticle that acts as a mass and plasmonic label; the two signatures are detected by means of a silicon cantilever that serves as a mechanical resonator for ‘weighing’ the mass of the captured nanoparticles and as an optical cavity that boosts the plasmonic signal from the nanoparticles. The capabilities of the approach are illustrated with two cancer biomarkers: the carcinoembryonic antigen and the prostate specific antigen, which are currently in clinical use for the diagnosis, monitoring and prognosis of colon and prostate cancer, respectively. A detection limit of 1 × 10−16 g ml−1 in serum is achieved with both biomarkers, which is at least seven orders of magnitude lower than that achieved in routine clinical practice. Moreover, the rate of false positives and false negatives at this concentration is extremely low, 10−4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the sandwich assay on the cantilevers and the effect of the sandwich assay on the resonance frequency of the cantilever.
Figure 2: Nanoparticle plasmon resonance and optical cantilever cavity.
Figure 3: Nanomechanical detection of the CEA protein biomarker.
Figure 4: Plasmonic detection of the CEA protein biomarker on the cantilever optical microcavity.
Figure 5: Biomarker detection limit by an unsophisticated plasmonic readout in cantilevers and reliability of the optomechanoplasmonic device.
Figure 6: Fractal nanoparticle distribution after the sandwich detection assay.

Similar content being viewed by others

References

  1. Liotta, L. A., Ferrari, M. & Petricoin, E. Clinical proteomics: written in blood. Nature 425, 905–905 (2003).

    Article  CAS  Google Scholar 

  2. Simpson, R. J., Bernhard, O. K., Greening, D. W. & Moritz, R. L. Proteomics-driven cancer biomarker discovery: looking to the future. Curr. Opin. Chem. Biol. 12, 72–77 (2008).

    Article  CAS  Google Scholar 

  3. Hanash, S. M., Pitteri, S. J. & Faca, V. M. Mining the plasma proteome for cancer biomarkers. Nature 452, 571–579 (2008).

    Article  CAS  Google Scholar 

  4. Schiess, R., Wollscheid, B. & Aebersold, R. Targeted proteomic strategy for clinical biomarker discovery. Mol. Oncol. 3, 33–44 (2009).

    Article  CAS  Google Scholar 

  5. Stern, E. et al. Label-free biomarker detection from whole blood. Nature Nanotech. 5, 138–142 (2009).

    Article  Google Scholar 

  6. Swierczewska, M., Liu, G., Lee, S. & Chen, X. High-sensitivity nanosensors for biomarker detection. Chem. Soc. Rev. 41, 2641–2655 (2012).

    Article  CAS  Google Scholar 

  7. de La Rica, R. & Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nature Nanotech. 7, 821–824 (2012).

    Article  CAS  Google Scholar 

  8. Nair, P. R. & Alam, M. A. Performance limits of nanobiosensors. Appl. Phys. Lett. 88, 233120 (2006).

    Article  Google Scholar 

  9. Squires, T. M., Messinger, R. J. & Manalis, S. R. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nature Biotechnol. 26, 417–426 (2008).

    Article  CAS  Google Scholar 

  10. Kosaka, P. M. et al. Tackling reproducibility in microcantilever biosensors: a statistical approach for sensitive and specific end-point detection of immunoreactions. Analyst 138, 863–872 (2013).

    Article  CAS  Google Scholar 

  11. Mayer, K. M. & Hafner, J. H. Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011).

    Article  CAS  Google Scholar 

  12. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  CAS  Google Scholar 

  13. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  Google Scholar 

  14. Braun, T. et al. Quantitative time-resolved measurement of membrane protein–ligand interactions using microcantilever array sensors. Nature Nanotech. 4, 179–185 (2009).

    Article  CAS  Google Scholar 

  15. Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203–215 (2011).

    Article  CAS  Google Scholar 

  16. Boisen, A., Dohn, S., Keller, S. S., Schmid, S. & Tenje, M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74, 036101 (2011).

    Article  Google Scholar 

  17. Buchapudi, K. R., Huang, X., Yang, X., Ji, H-F. & Thundat, T. Microcantilever biosensors for chemicals and bioorganisms. Analyst 136, 1539–1556 (2011).

    Article  CAS  Google Scholar 

  18. Tamayo, J., Kosaka, P. M., Ruz, J. J., San Paulo, A. & Calleja, M. Biosensors based on nanomechanical systems. Chem. Soc. Rev. 42, 1287–1311 (2013).

    Article  CAS  Google Scholar 

  19. Longo, G. et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nature Nanotech. 8, 522–526 (2013).

    Article  CAS  Google Scholar 

  20. Huber, F., Lang, H. P., Backmann, N., Rimoldi, D. & Gerber, Ch. Direct detection of a BRAF mutation in total RNA from melanoma cells using cantilever arrays. Nature Nanotech. 8, 125–129 (2013).

    Article  CAS  Google Scholar 

  21. Thakur, G. et al. Investigation of pH-induced protein conformation changes by nanomechanical deflection. Langmuir 30, 2109–2116 (2014).

    Article  CAS  Google Scholar 

  22. Ndieyira, J. W. et al. Surface stress sensors for rapid and ultrasensitive detection of active free drugs in human serum. Nature Nanotech. 9, 225–232 (2014).

    Article  CAS  Google Scholar 

  23. Tamayo, J. et al. Imaging the surface stress and vibration modes of a microcantilever by laser beam deflection microscopy. Nanotechnology 23, 315501 (2012).

    Article  Google Scholar 

  24. Waggoner, P. S., Varshney, M. & Craighead, H. G. Detection of prostate specific antigen with nanomechanical resonators. Lab Chip 9, 3095–3099 (2009).

    Article  CAS  Google Scholar 

  25. Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

    Article  CAS  Google Scholar 

  26. Hanay, M. S. et al. Single-protein nanomechanical mass spectrometry in real time. Nature Nanotech. 7, 602–608 (2012).

    Article  CAS  Google Scholar 

  27. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotech. 7, 301–304 (2012).

    Article  CAS  Google Scholar 

  28. Knight, M. W., Wu, Y., Lassiter, J. B., Nordlander, P. & Halas, N. J. Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett. 9, 2188–2192 (2009).

    Article  CAS  Google Scholar 

  29. Fan, J. A. et al. Near-normal incidence dark-field microscopy: applications to nanoplasmonic spectroscopy. Nano Lett. 12, 2817–2821 (2012).

    Article  CAS  Google Scholar 

  30. Mock, J. J. et al. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 8, 2245–2252 (2008).

    Article  CAS  Google Scholar 

  31. Özkumur, E. et al. Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications. Proc. Natl Acad. Sci. USA 105, 7988–7992 (2008).

    Article  Google Scholar 

  32. Gómez-Martínez, R. et al. Silicon chips detect intracellular pressure changes in living cells. Nature Nanotech. 8, 517–521 (2013).

    Article  Google Scholar 

  33. Schmidt, M. A., Lei, D. Y., Wondraczek, L., Nazabal, V. & Maier, S. A. Hybrid nanoparticle–microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nature Commun. 3, 1108 (2012).

    Article  Google Scholar 

  34. Zhou, F. et al. Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst 137, 1779–1784 (2012).

    Article  CAS  Google Scholar 

  35. Perkins, N. J., Schisterman, E. F. & Vexler, A. ROC curve inference for best linear combination of two biomarkers subject to limits of detection. Biometrical J. 53, 464–476 (2011).

    Article  Google Scholar 

  36. Haerifar, M. & Azizian, S. Fractal-like kinetics for adsorption on heterogeneous solid surfaces. J. Phys. Chem. C 118, 1129–1134 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Spanish Science Ministry (MINECO) through projects MAT2012-36197 and INMUNO-SWING ITP-2011-0821-010000, and from the European Research Council through Starting Grant NANOFORCELLS (ERC-StG-2011-278860). R.A. da Silva acknowledges financial support from the Brazilian Agency CNPq through grant 209693/2012-6. The authors thank J. M. de la Fuente and V. Grazu for their assistance with the biochemical functionalization protocols.

Author information

Authors and Affiliations

Authors

Contributions

P.M.K., J.T. and M.C. conceived and designed the work. P.M.K. and R.A.S. performed the bioassays. P.M.K. and V.P. carried out the mechanical and scattering detection. P.M.K., V.P. and J.T. developed the instrumentation for mechanical and plasmonics detection. P.M.K., M.U.G. and V.P. carried out spectral scattering measurements. D.R., V.P. and M.U.G. performed the spectra scattering modelling. V.P., J.J.R. and P.M.K. executed the SEM surface inspections and developed the software for the data treatment. J.T., P.M.K. and M.C. wrote the manuscript with inputs from all authors. All the authors analysed the data, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to J. Tamayo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosaka, P., Pini, V., Ruz, J. et al. Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor. Nature Nanotech 9, 1047–1053 (2014). https://doi.org/10.1038/nnano.2014.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing