Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice

Abstract

The design of nanoscale organic–metal hybrids with tunable magnetic properties as well as the realization of controlled magnetic coupling between them open gateways for novel molecular spintronic devices. Progress in this direction requires a combination of a clever choice of organic and thin-film materials, advanced magnetic characterization techniques with a spatial resolution down to the atomic length scale, and a thorough understanding of magnetic properties based on first-principles calculations. Here, we make use of carbon-based systems of various nanoscale size, such as single coronene molecules and islands of graphene, deposited on a skyrmion lattice of a single atomic layer of iron on an iridium substrate, in order to tune the magnetic characteristics (for example, magnetic moments, magnetic anisotropies and coercive field strengths) of the organic–metal hybrids. Moreover, we demonstrate long-range magnetic coupling between individual organic–metal hybrids via the chiral magnetic skyrmion lattice, thereby offering viable routes towards spin information transmission between magnetically stable states in nanoscale dimensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SP-STM images of Cor–FM units embedded in a SkX under an external magnetic field.
Figure 2: Magnetic switching fields of organic–FM units embedded in a SkX measured by SP-STM.
Figure 3: Adsorption geometry, magnetic moment μ, exchange coupling constant J and magnetic anisotropy energy constant K for graphene and coronene on an Fe monolayer on Ir(111) by DFT.
Figure 4: Magnetic coupling of Cor–FM units via a SkX by SP-STM.

Similar content being viewed by others

References

  1. Dediu, V., Murgia, M., Matacotta, F. C., Taliani, C. & Barbanera, S. Room temperature spin polarized injection in organic semiconductor. Solid State Commun. 122, 181–184 (2002).

    Article  CAS  Google Scholar 

  2. Xiong, Z. H., Wu, D., Valy Vardeny, Z. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  3. Iacovita, C. et al. Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2008).

    Article  CAS  Google Scholar 

  4. Cinchetti, M. et al. Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nature Mater. 8, 115–119 (2009).

    Article  CAS  Google Scholar 

  5. Gambardella, P. et al. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nature Mater. 8, 189–193 (2009).

    Article  CAS  Google Scholar 

  6. Brede, J. et al. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys. Rev. Lett. 105, 047204 (2010).

    Article  Google Scholar 

  7. Barraud, C. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nature Phys. 6, 615–620 (2010).

    Article  CAS  Google Scholar 

  8. Atodiresei, N. et al. Design of the local spin polarization at the organic–ferromagnetic interface. Phys. Rev. Lett. 105, 066601 (2010).

    Article  Google Scholar 

  9. Javaid, S. et al. Impact on interface spin polarization of molecular bonding to metallic surfaces. Phys. Rev. Lett. 105, 077201 (2010).

    Article  CAS  Google Scholar 

  10. Atodiresei, N., Caciuc, V., Lazić, P. & Blügel, S. Engineering the magnetic properties of hybrid organic–ferromagnetic interfaces by molecular chemical functionalization. Phys. Rev. B 84, 172402 (2011).

    Article  Google Scholar 

  11. Mugarza, A. et al. Spin coupling and relaxation inside molecule–metal contacts. Nature Commun. 2, 490 (2011).

    Article  Google Scholar 

  12. Franke, K. J., Schulze, G. & Pascual, J. I. Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940–944 (2011).

    Article  CAS  Google Scholar 

  13. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  CAS  Google Scholar 

  14. Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    Article  CAS  Google Scholar 

  15. Callsen, M., Caciuc, V., Kiselev, N., Atodiresei, N. & Blügel, S. Magnetic hardening induced by nonmagnetic organic molecules. Phys. Rev. Lett. 111, 106805 (2013).

    Article  Google Scholar 

  16. Kawahara, S. L. et al. Large magnetoresistance through a single molecule due to a spin-split hybridized orbital. Nano Lett. 12, 4558–4563 (2012).

    Article  CAS  Google Scholar 

  17. Schwöbel, J. et al. Real-space observation of spin-split molecular orbitals of adsorbed single-molecule magnets. Nature Commun. 3, 953 (2012).

    Article  Google Scholar 

  18. Khajetoorians, A. A., Wiebe, J., Chilian, B. & Wiesendanger, R. Realizing all-spin-based logic operations atom by atom. Science 332, 1062–1064 (2011).

    Article  CAS  Google Scholar 

  19. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).

    Article  CAS  Google Scholar 

  20. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  CAS  Google Scholar 

  21. Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    Article  CAS  Google Scholar 

  22. Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science 335, 196–199 (2012).

    Article  CAS  Google Scholar 

  23. Khajetoorians, A. A. et al. Current-driven spin dynamics of artificially constructed quantum magnets. Science 339, 55–59 (2013).

    Article  CAS  Google Scholar 

  24. Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nature Phys. 7, 713–718 (2011).

    Article  CAS  Google Scholar 

  25. Decker, R. et al. Atomic-scale magnetism of cobalt-intercalated graphene. Phys. Rev. B 87, 041403 (2013).

    Article  Google Scholar 

  26. Raman, K. V. et al. Interface-engineered templates for molecular spin memory devices. Nature 493, 509–513 (2013).

    Article  CAS  Google Scholar 

  27. Ouazi, S. et al. Magnetization reversal of individual Co nanoislands. Phys. Rev. Lett. 108, 107206 (2012).

    Article  CAS  Google Scholar 

  28. Menzel, M. et al. Information transfer by vector spin chirality in finite magnetic chains. Phys. Rev. Lett. 108, 197204 (2012).

    Article  Google Scholar 

  29. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  30. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Deutsche Forschungsgemeinschaft (SFB 668 and SPP 1538) and from the European Union (ERC Advanced Grant FURORE). Computations were performed under the auspices of the Kommision zur Vergabe von Supercomputing Ressourcen (computer JUROPA) and the Gauss Centre for Supercomputing (the high-performance computer JUQUEEN operated by the Jülich Supercomputing Centre at the Forschungszentrum Jülich). J.B. is grateful for insightful discussions with A. Kubetzka and K. von Bergmann and for help from R. Decker before this project.

Author information

Authors and Affiliations

Authors

Contributions

J.B. and N.A. conceived the experiment. J.B. carried out the measurements and analysed the experimental data. M.B. supported the measurements. N.A., V.C. and A.A-Z. carried out and analysed the DFT calculations. J.B. and R.W. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Jens Brede or Nicolae Atodiresei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4806 kb)

Supplementary Movie

Supplementary Movie (WMV 7005 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brede, J., Atodiresei, N., Caciuc, V. et al. Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice. Nature Nanotech 9, 1018–1023 (2014). https://doi.org/10.1038/nnano.2014.235

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing