Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry

Abstract

The valley degree of freedom of electrons is attracting growing interest as a carrier of information in various materials, including graphene, diamond and monolayer transition-metal dichalcogenides. The monolayer transition-metal dichalcogenides are semiconducting and are unique due to the coupling between the spin and valley degrees of freedom originating from the relativistic spin–orbit interaction. Here, we report the direct observation of valley-dependent out-of-plane spin polarization in an archetypal transition-metal dichalcogenide—MoS2—using spin- and angle-resolved photoemission spectroscopy. The result is in fair agreement with a first-principles theoretical prediction. This was made possible by choosing a 3R polytype crystal, which has a non-centrosymmetric structure, rather than the conventional centrosymmetric 2H form. We also confirm robust valley polarization in the 3R form by means of circularly polarized photoluminescence spectroscopy. Non-centrosymmetric transition-metal dichalcogenide crystals may provide a firm basis for the development of magnetic and electric manipulation of spin/valley degrees of freedom.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure and Brillouin zones of monolayer, 2H and 3R forms of MoS2.
Figure 2: Structural and optical characterizations of 2H and 3R single crystals of MoS2.
Figure 3: Valence bandstructures of 3R- and 2H-MoS2.
Figure 4: Detection of the spin polarization near the valence band top at the and points.
Figure 5: Circular dichroic photoluminescence of bilayer 2H- and 3R-MoS2.

Similar content being viewed by others

References

  1. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nature Nanotech. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  2. Podzorov, V., Gershenson, M. E., Kloc, Ch., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301 (2004).

    Article  CAS  Google Scholar 

  3. Zhang, Y. J., Ye, J. T., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012).

    Article  CAS  Google Scholar 

  4. Braga, D., Lezama, I. G., Berger, H. & Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 12, 5218–5223 (2012).

    Article  CAS  Google Scholar 

  5. Ye, J. T., Zhang, Y. J., Akashi, R., Bahramy, M. S., Arita, R. & Iwasa, Y. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  CAS  Google Scholar 

  6. Taniguchi, K., Matsumoto, A., Shimotani, H. & Takagi, H. Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2 . Appl. Phys. Lett. 101, 042603 (2012).

    Article  Google Scholar 

  7. Yuan, H. T. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

    Article  CAS  Google Scholar 

  8. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  9. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  10. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012).

    Article  CAS  Google Scholar 

  11. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  12. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

    Article  Google Scholar 

  13. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    Article  Google Scholar 

  14. Takashina, K., Ono, Y., Fujiwara, A., Takahashi, Y. & Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96, 236801 (2006).

    Article  CAS  Google Scholar 

  15. Isberg, J. et al. Generation, transport and detection of valley-polarized electrons in diamond. Nature Mater. 12, 760–764 (2013).

    Article  CAS  Google Scholar 

  16. Shkolnikov, Y. P., De Poortere, E. P., Tutuc, E. & Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 89, 226805 (2002).

    Article  CAS  Google Scholar 

  17. Gunawan, O. et al. Valley susceptibility of an interacting two-dimensional electron system. Phys. Rev. Lett. 97, 186404 (2006).

    Article  CAS  Google Scholar 

  18. Gunawan, O. et al. Spin-valley phase diagram of the two-dimensional metal–insulator transition. Nature Phys. 3, 388–391 (2007).

    Article  CAS  Google Scholar 

  19. Zhu, Z., Collaudin, A., Fauque, B., Kang, W. & Behnia K. Field-induced polarization of Dirac valleys in bismuth. Nature Phys. 8, 89–94 (2012).

    Article  CAS  Google Scholar 

  20. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  21. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    Article  CAS  Google Scholar 

  22. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    Article  Google Scholar 

  23. Gunlycke, D. & White, C. T. Graphene valley filter using a line defect. Phys. Rev.Lett. 106, 136806 (2011).

    Article  CAS  Google Scholar 

  24. Xiao, D., Liu, G., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  25. Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 . Phys. Rev. B 88, 121301 (2013).

    Article  Google Scholar 

  26. Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nature Phys. 9, 149–153 (2013).

    Article  CAS  Google Scholar 

  27. Jones, A. M. et al. Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2 . Nature Phys. 10, 130–134 (2014).

    Article  CAS  Google Scholar 

  28. Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–334 (1969).

    Article  CAS  Google Scholar 

  29. Wildervanck, J. C. Chalcogenides of Molybdenum, Tungsten, Technetium and Rhenium. PhD thesis, Univ. of Groningen (1970).

  30. Zhu, Z. Y., Cheng, Y. C. & Schwingenschlogl, U. Giant spin–orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article  Google Scholar 

  31. Lee, Y. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).

    Article  CAS  Google Scholar 

  32. Wu, S. et al. Vapor–solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7, 2768–2772 (2013).

    Article  CAS  Google Scholar 

  33. Liu, K-K. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 12, 1538–1544 (2012).

    Article  CAS  Google Scholar 

  34. Towle, L. C., Oberbeck, V., Brown, B. E. & Stajdohar, R. E. Molybdenum diselenide: rhombohedral high pressure-high temperature polymorph. Science 154, 895–896 (1966).

    Article  CAS  Google Scholar 

  35. Al-hilli, A. A. & Evans, B. L. The preparation and properties of transition metal dichalcogenide single crystals. J. Cryst. Growth 15, 93–101 (1972).

    Article  CAS  Google Scholar 

  36. Beal, A. R., Knights, J. C. & Liang, W. Y. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J. Phys. C 5, 3540–3551 (1972).

    Article  CAS  Google Scholar 

  37. Coehoorn, R. et al. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. Phys. Rev. B 35, 6195–6202 (1987).

    Article  CAS  Google Scholar 

  38. Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

    Article  Google Scholar 

  39. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nature Mater. 10, 521–526 (2011).

    Article  CAS  Google Scholar 

  40. Okuda, T. et al. Efficient spin resolved spectroscopy observation machine at Hiroshima Synchrotron Radiation Center. Rev. Sci. Instrum. 82, 103302 (2011).

    Article  Google Scholar 

  41. Meier, F., Dil, H., Lobo-Checa, J., Patthey, L. & Osterwalder, J. Quantitative vectorial spin analysis in angle-resolved photoemission: Bi/Ag(111) and Pb/Ag(111). Phys. Rev. B 77, 165431 (2008).

    Article  Google Scholar 

  42. Sakamoto, K. et al. Valley spin polarization by using the extraordinary Rashba effect on silicon. Nature Commun. 4, 2073 (2013).

    Article  Google Scholar 

  43. Lee, C. et al. Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 2695–2700 (2010).

    Article  CAS  Google Scholar 

  44. Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    Article  CAS  Google Scholar 

  45. Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 2053 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. T. Ye, Y. Kasahara, J. Fujioka, S. Z. Bisri and Y. Kaneko for help with sample preparation and characterization, T. Shimojima, K. Shirai and K. Sumida for help with SARPES measurements, S. Shin, A. Kimura, H. Namatame and M. Taniguchi for sharing SARPES infrastructure, and Y. Nomura for useful comments on bandstructure calculations. The authors also thank T. Banno for his help with the maintenance of the photoluminescence measurement system. R.S. is supported by the Leading Graduate Program of Materials Education for future leaders in Research, Industry and Technology (MERIT). M.S. and Y.J.Z. are supported by the Advanced Leading Graduate Course for Photon Science (ALPS) and by a research fellowship for young scientists from JSPS. This research was partly supported by the Strategic International Collaborative Research Program (SICORP-LEMSUPER) and Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Research Hub for Advanced Nano Characterization, The University of Tokyo, supported by MEXT, Japan, as well as by a Grant-in-Aid for Scientific Specially Promoted Research (nos. 25000003 and 23244066) and the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program) from JSPS, Japan.

Author information

Authors and Affiliations

Authors

Contributions

R.S., Y.Z. and Y.I. conceived and designed the research. R.S. grew and characterized all the crystals used in the research and D.M. generated CBED patterns. M.S., K.I., A.H., K.Y., K.K., K.M. and T.O. performed SARPES measurements. M.S. and K.I. analysed (S)ARPES data. First-principles calculations were made by R.Ak. and R.Ar. Y.Z. built a photoluminescence measurement system and R.S. measured the photoluminescence spectra. R.S., M.S., Y.Z., R.Ak., D.M., K.I., R.Ar. and Y.I. wrote the manuscript.

Corresponding authors

Correspondence to K. Ishizaka or Y. Iwasa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, R., Sakano, M., Zhang, Y. et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nature Nanotech 9, 611–617 (2014). https://doi.org/10.1038/nnano.2014.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing