Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic switching of the spin circulation in tapered magnetic nanodisks

This article has been updated

Abstract

Magnetic vortices are characterized by the sense of in-plane magnetization circulation and by the polarity of the vortex core. With each having two possible states, there are four possible stable magnetization configurations that can be utilized for a multibit memory cell. Dynamic control of vortex core polarity has been demonstrated using both alternating and pulsed magnetic fields and currents. Here, we show controlled dynamic switching of spin circulation in vortices using nanosecond field pulses by imaging the process with full-field soft X-ray transmission microscopy. The dynamic reversal process is controlled by far-from-equilibrium gyrotropic precession of the vortex core, and the reversal is achieved at significantly reduced field amplitudes when compared with static switching. We further show that both the field pulse amplitude and duration required for efficient circulation reversal can be controlled by appropriate selection of the disk geometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample configuration.
Figure 2: MTXM images showing the switching of spin circulation in magnetic vortices by static magnetic fields and field pulses.
Figure 3: Conditions for static and dynamic annihilation of the vortex core.
Figure 4: Temporal evolution of dynamic annihilation of the vortex core.

Similar content being viewed by others

Change history

  • 24 April 2013

    In the version of this Article originally published online, in the ninth paragraph, the word 'redundant' should not have appeared in the sentence"...are summarized in Table 1 and the minimum pulse durations are plotted in Fig. 3b (blue triangles) for 20-nm-thick disks". In the tenth paragraph, the formula s = RχB/(μ0MS) should have appeared as shown here. These errors have been corrected in all versions of the Article.

References

  1. Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Nanostructures (Springer, 1998).

    Google Scholar 

  2. Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magnetic vortex core observation in circular dots of permalloy. Science 289, 930–932 (2000).

    Article  CAS  Google Scholar 

  3. Wachowiak, A. et al. Direct observation of internal spin structure of magnetic vortex cores. Science 298, 577–580 (2002).

    Article  CAS  Google Scholar 

  4. Choe, S-B. et al. Vortex core-driven magnetization dynamics. Science 304, 420–422 (2004).

    Article  CAS  Google Scholar 

  5. Guslienko, K. Y. et al. Eigenfrequencies of vortex state excitations in magnetic submicron-size disks. J. Appl. Phys. 91, 8037–8039 (2002).

    Article  CAS  Google Scholar 

  6. Novosad, V. et al. Spin excitations of magnetic vortices in ferromagnetic nanodots. Phys. Rev. B 66, 052407 (2002).

    Article  Google Scholar 

  7. Park, J. P. & Crowell, P. A. Interactions of spin waves with a magnetic vortex. Phys. Rev. Lett. 95, 167201 (2005).

    Article  CAS  Google Scholar 

  8. Buchanan, K. S., Grimsditch, M., Fradin, F. Y., Bader, S. D. & Novosad, V. Driven dynamic mode splitting of the magnetic vortex translational resonance. Phys. Rev. Lett. 99, 267201 (2007).

    Article  CAS  Google Scholar 

  9. Antos, R. & Otani, Y. Simulations of the dynamic switching of vortex chirality in magnetic nanodisks by a uniform field pulse. Phys Rev. B 80, 140404(R) (2009).

    Article  Google Scholar 

  10. Ishida, T., Kimura, T. & Otani, Y. Current-induced vortex displacement and annihilation in a single permalloy disk. Phys. Rev. B 74, 014424 (2006).

    Article  Google Scholar 

  11. Pribiag, V. S. et al. Magnetic vortex oscillator driven by d.c. spin-polarized current. Nature Phys. 3, 498–503 (2007).

    Article  CAS  Google Scholar 

  12. Ruotolo, A. et al. Phase-locking of magnetic vortices mediated by antivortices. Nature Nanotech. 4, 528–532 (2009).

    Article  CAS  Google Scholar 

  13. Kosevich, A. M., Ivanov, B. A. & Kovalev, A. S. Magnetic solitons. Phys. Rep. 194, 117–238 (1990).

    Article  CAS  Google Scholar 

  14. Van Waeyenberge, B. et al. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461–464 (2006).

    Article  CAS  Google Scholar 

  15. Lee, K-S. & Kim, S-K. Two circular-rotational eigenmodes and their giant resonance asymmetry in vortex gyrotropic motions in soft magnetic nanodots. Phys Rev. B 78, 014405 (2008).

    Article  Google Scholar 

  16. Yamada, K. et al. Electrical switching of the vortex core in a magnetic disk. Nature Mater. 6, 269–273 (2007).

    Article  CAS  Google Scholar 

  17. Bohlens, S. et al. Current controlled random-access memory based on magnetic vortex handedness. Appl. Phys. Lett. 93, 142508 (2008).

    Article  Google Scholar 

  18. Nakano, K. et al. All-electrical operation of magnetic vortex core memory cell. Appl. Phys. Lett. 99, 262505 (2011).

    Article  Google Scholar 

  19. Goto, M. et al. Electric spectroscopy of vortex states and dynamics in magnetic disks. Phys. Rev. B 84, 064406 (2011).

    Article  Google Scholar 

  20. Kikuchi, N. et al. Vertical bistable switching of spin vortex in a circular magnetic dot. J. Appl. Phys. 90, 6548–6549 (2001).

    Article  CAS  Google Scholar 

  21. Hertel, R., Gliga, S., Fähnle, M. & Schneider, C. M. Ultrafast nanomagnetic toggle switching of vortex cores. Phys. Rev. Lett. 98, 117201 (2007).

    Article  CAS  Google Scholar 

  22. Curcic, M. et al. Polarization selective magnetic vortex dynamics and core reversal in rotating magnetic fields. Phys. Rev. Lett. 101, 197204 (2007).

    Article  Google Scholar 

  23. Guslienko, K. Y., Lee, K.-S. & Kim, S.-K. Dynamic origin of vortex core switching in soft magnetic nanodots. Phys. Rev. Lett. 100, 027203 (2008).

    Article  Google Scholar 

  24. Lee K-S. et al. Universal criterion and phase diagram for switching a magnetic vortex core in soft magnetic nanodots. Phys. Rev. Lett. 101, 267206 (2008).

    Article  Google Scholar 

  25. Kammerer, M. et al. Magnetic vortex core reversal by excitation of spin waves. Nature Commun. 2, 279 (2011).

    Article  Google Scholar 

  26. Xiao, Q. F., Rudge, J., Choi, B. C., Hong, Y. K. & Donohoe, G. Dynamics of vortex core switching in ferromagnetic nanodisks. Appl. Phys. Lett. 89, 262507 (2006).

    Article  Google Scholar 

  27. Nakano, K. et al. Real-time observation of electrical vortex core switching. Appl. Phys. Lett. 102, 072405 (2013).

    Article  Google Scholar 

  28. Guslienko, K. Y., Novosad, V., Otani, Y., Shima, H. & Fukamichi, K. Field evolution of magnetic vortex state in ferromagnetic disks. Appl. Phys. Lett. 78, 3848–3850 (2001).

    Article  CAS  Google Scholar 

  29. Schneider, M., Hoffmann, H. & Zweck, J. Magnetic switching of single vortex permalloy elements. Appl. Phys. Lett. 79, 3113–3115 (2001).

    Article  CAS  Google Scholar 

  30. Yakata, S., Miyata, M., Nonoguchi, S., Wada, H. & Kimura, T. Control of vortex chirality in regular polygonal nanomagnets using in-plane magnetic field. Appl. Phys. Lett. 97, 222503 (2010).

    Article  Google Scholar 

  31. Jaafar, M. et al. Control of the chirality and polarity of magnetic vortices in triangular nanodots. Phys. Rev. B 81, 054439 (2010).

    Article  Google Scholar 

  32. Mironov, V. L. et al. MFM probe control of magnetic vortex chirality in elliptical Co nanoparticles. J. Magn. Magn. Mater. 312, 153–157 (2007).

    Article  CAS  Google Scholar 

  33. Gaididei, Y., Sheka, D. D. & Mertens, F. G. Controllable switching of vortex chirality in magnetic nanodisks by a field pulse. Appl. Phys. Lett. 92, 012503 (2008).

    Article  Google Scholar 

  34. Konoto, M. et al. Formation and control of magnetic vortex chirality in patterned micromagnet arrays. J. Appl. Phys. 103, 023904 (2008).

    Article  Google Scholar 

  35. Yakata, S. et al. Chirality control of magnetic vortex in a square Py dot using current-induced Oersted field. Appl. Phys. Lett. 99, 242507 (2011).

    Article  Google Scholar 

  36. Tanase, M. et al. Magnetization reversal in circularly exchange-biased ferromagnetic disks. Phys. Rev. B 79, 014436 (2009).

    Article  Google Scholar 

  37. Im, M-Y. et al. Symmetry breaking in the formation of magnetic vortex states in a permalloy nanodisk. Nature Commun. 3, 983 (2012).

    Article  Google Scholar 

  38. Choi, B. C. et al. Spin-current pulse induced switching of vortex chirality in permalloy/Cu/Co nanopillars. Appl. Phys. Lett. 91, 022501 (2007).

    Article  Google Scholar 

  39. Stoner, E. C. & Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A 240, 599–642 (1948).

    Article  Google Scholar 

  40. He, L., Doyle, W. D. & Fujiwara, H. High speed coherent switching below the Stoner–Wohlfarth limit. IEEE Trans. Magn. 30, 4086–4088 (1994).

    Article  Google Scholar 

  41. Fischer, P. et al. Soft X-ray microscopy of nanomagnetism. Mater. Today 9, 26–33 (January–February, 2006).

    Article  CAS  Google Scholar 

  42. Cowburn, R. P., Adeyeye, A. O. & Welland, M. E. Controlling magnetic ordering in coupled nanomagnet arrays. New J. Phys. 1, 16 (1999).

    Article  Google Scholar 

  43. Natali, M. et al. Correlated magnetic vortex chains in mesoscopic cobalt dot arrays. Phys. Rev. Lett. 88, 157203 (2002).

    Article  CAS  Google Scholar 

  44. Novosad, V. et al. Nucleation and annihilation of magnetic vortices in sub-micron permalloy dots. IEEE Trans. Magn. 37, 2088–2090 (2001).

    Article  CAS  Google Scholar 

  45. Donahue, M. J. & Porter, D. G. OOMMF User's Guide, Version 1.0, Interagency Report NISTIR 6376 (National Institute of Standards and Technology, 1999).

    Book  Google Scholar 

  46. Cheng, X. M., Buchanan, K. S., Divan, R., Guslienko, K. Y. & Keavney D. J. Nonlinear vortex dynamics and transient domains in ferromagnetic disks. Phys. Rev. B 79, 172411 (2009).

    Article  Google Scholar 

  47. Park, J. P., Eames, P., Engebretson, D. M., Berezovsky, J. & Crowell, P. A. Imaging of spin dynamics in closure domain and vortex structures. Phys. Rev. B 67, 020403(R) (2003).

    Article  Google Scholar 

  48. Döring, W. On the inertia of walls between Weiss domains. Z. Naturforsch. 3a, 373–379 (1948).

    Article  Google Scholar 

  49. Dussaux, A. et al. Field dependence of spin-transfer-induced vortex dynamics in the nonlinear regime. Phys. Rev. B 86, 014402 (2012).

    Article  Google Scholar 

  50. Chung, S-H., McMichael, R. D., Pierce, D. T. & Unguris, J. Phase diagram of magnetic nanodisks measured by scanning electron microscopy with polarization analysis. Phys. Rev. B 81, 024410 (2010).

    Article  Google Scholar 

  51. Chang, R., Li, S., Lubarda, M. V., Livshitz, B. & Lomakin, V. FastMag: fast micromagnetic simulator for complex magnetic structures. J. Appl. Phys. 109, 07D358 (2011).

    Article  Google Scholar 

  52. Escobar, M. A. et al. Advanced micromagnetic analysis of write head dynamics using FastMag. IEEE Trans. Magn. 48, 1731–1737 (2012).

    Article  Google Scholar 

  53. Kasai, S. et al. Probing the spin polarization of current by soft X-ray imaging of current-induced magnetic vortex dynamics. Phys. Rev. Lett. 101, 237203 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank R. Descoteaux and O. Inac for technical help. The authors also thank M. Escobar and V. Lomakin for help with the FastMag simulations, R. Antoš for useful discussions and J. Sapan for editing the manuscript. The research at UCSD was supported by the research programs of the US Department of Energy (DOE), Office of Basic Energy Sciences (award #DE-SC0003678), and the research at CEITEC BUT by the European Regional Development Fund (CEITEC – CZ.1.05/1.1.00/02.0068) and the Grant Agency of the Czech Republic (project no. P102/12/P443). The operation of the X-ray microscope was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US DOE (contract no. DE-AC02-05-CH11231). Sample nanofabrication was supported by the company TESCAN.

Author information

Authors and Affiliations

Authors

Contributions

V.U. and M.U. designed and planned the experiment. M.U. and L.H. fabricated the samples. V.U., M.U., J.S. and T.Š. performed the experiments, with help from M-Y.I., P.F., N.E. and J.J.K. V.U. and M.U. carried out the micromagnetic simulations, analysed the data and prepared the figures. E.E.F. was involved in experimental planning and analysis of the results. V.U. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to V. Uhlíř.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 587 kb)

Supplementary movie S1

Supplementary movie S1 (AVI 17244 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlíř, V., Urbánek, M., Hladík, L. et al. Dynamic switching of the spin circulation in tapered magnetic nanodisks. Nature Nanotech 8, 341–346 (2013). https://doi.org/10.1038/nnano.2013.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.66

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing