Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo magnetic resonance imaging of hyperpolarized silicon particles

Abstract

Silicon-based micro- and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in vivo, as well as their flexible surface chemistry, which allows drug loading, functionalization and targeting. Here, we report direct in vivo imaging of hyperpolarized 29Si nuclei in silicon particles by magnetic resonance imaging. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization, extremely long depolarization times, insensitivity to the in vivo environment or particle tumbling, and surfaces favourable for functionalization. Potential applications to gastrointestinal, intravascular and tumour perfusion imaging at subpicomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available and biocompatible silicon particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of silicon particles.
Figure 2: 29Si nuclear spin dynamics in silicon particles.
Figure 3: 29Si phantom imaging.
Figure 4: In vivo applications of 29Si MRI using hyperpolarized silicon particles.

Similar content being viewed by others

References

  1. Nel, A., Xia, T., Madler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006).

    Article  CAS  Google Scholar 

  2. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediate cellular response is size-dependent. Nature Nanotech. 3, 145–150 (2008).

    Article  CAS  Google Scholar 

  3. Xia, X. R., Monteiro-Riviere, N. A. & Riviere, J. E. An index for characterization of nanomaterials in biological systems. Nature Nanotech. 5, 671–675 (2010).

    Article  CAS  Google Scholar 

  4. Park, J. H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009).

    Article  CAS  Google Scholar 

  5. Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotech. 3, 151–157 (2008).

    Article  CAS  Google Scholar 

  6. Tanaka, T. et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 70, 3687–3696 (2010).

    Article  CAS  Google Scholar 

  7. Singh, N. et al. Bioresponsive mesoporous silica nanoparticles for triggered drug release. J. Am. Chem. Soc. 133, 19582–19585 (2011).

    Article  CAS  Google Scholar 

  8. Mann, A. P. et al. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv. Mater. 23, 278–282 (2011).

    Article  Google Scholar 

  9. Tasciotti, E. et al. Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles. Mol. Imag. 10, 56–68 (2011).

    Article  CAS  Google Scholar 

  10. Ananta, J. S. et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nature Nanotech. 5, 815–821 (2010).

    Article  CAS  Google Scholar 

  11. Gu, L. et al. Magnetic luminescent porous silicon microparticles for localized delivery of molecular drug payloads. Small 6, 2546–2552 (2010).

    Article  CAS  Google Scholar 

  12. Tu, C. et al. PET imaging and biodistribution of silicon quantum dots in mice. ACS Med. Chem. Lett. 2, 285–288 (2011).

    Article  CAS  Google Scholar 

  13. Albert, M. S. et al. Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370, 199–201 (1994).

    Article  CAS  Google Scholar 

  14. Fain, S. et al. Functional lung imaging using hyperpolarized gas MRI. J. Magn. Reson. 25, 910–923 (2007).

    Article  Google Scholar 

  15. Mair, R. W. et al. 3He lung imaging in an open access, very-low-field human magnetic resonance imaging system. Magn. Res. Med. 53, 745–749 (2005).

    Article  CAS  Google Scholar 

  16. Day, S. E. et al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nature Med. 13, 1382–1387 (2007).

    Article  CAS  Google Scholar 

  17. Gallagher, F. A. et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943 (2008).

    Article  CAS  Google Scholar 

  18. Zacharias, N. M. et al. Real-time molecular imaging of tricarboxylic acid cycle metabolism in vivo by hyperpolarized 1–13C diethyl succinate. J. Am. Chem. Soc. 134, 934–943 (2011).

    Article  Google Scholar 

  19. Keshari, K. R. et al. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc. Natl Acad. Sci. USA 108, 18606–18611 (2011).

    Article  CAS  Google Scholar 

  20. Walker, T. G. & Happer, W. Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629–642 (1997).

    Article  CAS  Google Scholar 

  21. Ardenkjaer-Larsen, J. H. et al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).

    Article  CAS  Google Scholar 

  22. Hall, D. A., Maus, D., Gerfen, G. J. & Griffin, R. G. Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276, 930–932 (1997).

    Article  CAS  Google Scholar 

  23. Golman, K. et al. Molecular imaging with endogenous substances. Proc. Natl Acad. Sci. USA 100, 10435–10439 (2003).

    Article  CAS  Google Scholar 

  24. Shulman, R. G. & Wyluda, B. J. Nuclear magnetic resonance of Si29 in n and p type silicon. Phys. Rev. 103, 1127–1129 (1956).

    Article  CAS  Google Scholar 

  25. Aptekar, J. W. et al. Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents. ACS Nano 3, 4003–4008 (2009).

    Article  CAS  Google Scholar 

  26. Ladd, T. D. et al. Coherence time of decoupled nuclear spins in silicon. Phys. Rev. B 71, 014401 (2005).

    Article  Google Scholar 

  27. Dementyev, A. E., Cory, D. G. & Ramanathan, C. Dynamic nuclear polarization in silicon microparticles. Phys. Rev. Lett. 100, 127601 (2008).

    Article  CAS  Google Scholar 

  28. Godin, B. et al. Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J. Biomed. Mater. Res. A 94, 1236–1243 (2010).

    Google Scholar 

  29. Lee, M., Cassidy, M. C., Ramanathan, C. & Marcus, C. M. Decay of nuclear hyperpolarization in silicon microparticles. Phys. Rev. B 84, 035304 (2011).

    Article  Google Scholar 

  30. Abragam, A. Principles of Nuclear Magnetism (Oxford Univ. Press, 1983).

    Google Scholar 

  31. Bouchard, L. S. et al. Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles Proc. Natl Acad. Sci. USA 106, 4085–4089 (2009).

    Article  CAS  Google Scholar 

  32. Ahrens, E. T., Flores, R., Xu, H. & Morel, P. A. In vivo imaging platform for tracking immunotherapeutic cells. Nature Biotechnol. 23, 983–987 (2005).

    Article  CAS  Google Scholar 

  33. Bonetto, F. et al. A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging. Int. J. Cancer 129, 365–373 (2011).

    Article  CAS  Google Scholar 

  34. Umschaden, H. W. et al. Small-bowel disease: comparison of MR enteroclysis images with conventional enteroclysis and surgical findings. Radiology 215, 717–725 (2000).

    Article  CAS  Google Scholar 

  35. Jugdaohsingh, R. et al. Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J. Bone Miner. Res. 19, 297–307 (2004).

    Article  CAS  Google Scholar 

  36. Canham, L. T. Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18, 185704 (2007).

    Article  Google Scholar 

  37. US Food and Drug Administration Food Additives Permitted for Direct Addition to Food for Human Consumption—Anticaking Agents, 21CFR172.480 (US FDA, 2011).

  38. Thakor, A. S. et al. The fate and toxicity of Raman-active silica–gold nanoparticles in mice. Sci. Transl. Med. 3, 79–33 (2011).

    Article  Google Scholar 

  39. Gerion, D. et al. Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861–8871 (2001).

    Article  CAS  Google Scholar 

  40. Selvan, S. T., Patra, P. K., Ang, C. Y. & Ying, J. Y. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Ed. 46, 2448–2452 (2007).

    Article  CAS  Google Scholar 

  41. Atkins, T. M. et al. Synthesis of long-T1 silicon nanoparticles for hyperpolarized 29Si magnetic resonance imaging. ACS Nano 7, 1609–1617 (2013).

    Article  CAS  Google Scholar 

  42. Cassidy, M. C. Hyperpolarized Silicon Particles as In Vivo Imaging Agents. PhD thesis, Harvard Univ. (2012).

  43. McCamey, D. R., van Tol, J., Morley, G. W. & Boehme, C. Fast nuclear spin hyperpolarization of phosphorus in silicon. Phys. Rev. Lett. 102, 027601 (2009).

    Article  CAS  Google Scholar 

  44. Bagraev, N. T., Vlasenko, L. S. & Zhitnikov, R. A. Optical orientation of Si29 nuclei in compensated silicon. Sov. Phys. JETP Lett. 23, 586–589 (1976).

    Google Scholar 

  45. Wolber, J. et al. Spin-lattice relaxation of laser-polarized xenon in human blood. Proc. Natl Acad. Sci. USA 96, 3664–3669 (1999).

    Article  CAS  Google Scholar 

  46. Schroder, L., Lowery, T. J., Hilty, C., Wemmer, D. E. & Pines, A. Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314, 446–449 (2006).

    Article  Google Scholar 

  47. Lanza, G. et al. 1H/19F Magnetic resonance molecular imaging with perfluorocarbon nanoparticles. In Vivo Cell. Mol. Imag. 70, 57–76 (2005).

    Article  CAS  Google Scholar 

  48. Lustig, M., Donoho, D. & Pauly, J. M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Res. Med. 58, 1182–1195 (2007).

    Article  Google Scholar 

  49. Zhao, L. et al. Gradient-echo imaging considerations for hyperpolarized 129Xe MR. J. Magn. Reson. B 113, 179–183 (1996).

    Article  CAS  Google Scholar 

  50. Li, D., Dementyev, A. E., Dong, Y., Ramos, R. G. & Barrett, S. E. Generating unexpected spin echoes in dipolar solids with π pulses. Phys. Rev. Lett. 98, 190401 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Institutes of Health (NIH, 1R21 CA118509, 1R01NS048589), the National Cancer Institute (NCI, 5R01CA122513), the Tobacco Related Disease Research Program (TRDRP, 16KT-0044), the National Science Foundation (BISH, CBET-0933015), and the National Science Foundation through the Harvard Nanoscale Science and Engineering Center. M.C.C. acknowledges financial support from the R.G. Menzies Foundation. The authors thank L.W. Jones for the gift of the TRAMP animals, N. Zacharias for assistance with histology, M. Lee, L. Robertson and B.D. Armstrong for assistance with the initial stages of the experiment and L.W. Jones, C. Ramanathan and R.W. Mair for many helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.C.C., P.K.B. and C.M.M. designed the experiments. M.C.C., H.R.C. and P.K.B. performed the experiments. B.D.R. provided consultation on animal techniques. M.C.C. and C.M.M. co-wrote the paper.

Corresponding author

Correspondence to C. M. Marcus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3622 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassidy, M., Chan, H., Ross, B. et al. In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nature Nanotech 8, 363–368 (2013). https://doi.org/10.1038/nnano.2013.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.65

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing