Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination

Abstract

The assembly of nanomaterials using DNA can produce complex nanostructures, but the biological applications of these structures remain unexplored. Here, we describe the use of DNA to control the biological delivery and elimination of inorganic nanoparticles by organizing them into colloidal superstructures. The individual nanoparticles serve as building blocks, whose size, surface chemistry and assembly architecture dictate the overall superstructure design. These superstructures interact with cells and tissues as a function of their design, but subsequently degrade into building blocks that can escape biological sequestration. We demonstrate that this strategy reduces nanoparticle retention by macrophages and improves their in vivo tumour accumulation and whole-body elimination. Superstructures can be further functionalized to carry and protect imaging or therapeutic agents against enzymatic degradation. These results suggest a different strategy to engineer nanostructure interactions with biological systems and highlight new directions in the design of biodegradable and multifunctional nanomedicine.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of nanoparticle superstructures using DNA assembly.
Figure 2: Characterization of core–satellite superstructures.
Figure 3: Macrophage uptake of superstructures as a function of design.
Figure 4: Intracellular processing of superstructures by J774A.1 macrophages.
Figure 5: Renal elimination and tumour accumulation of superstructures.

Similar content being viewed by others

References

  1. Kim, J., Piao, Y. & Hyeon, T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem. Soc. Rev. 38, 372–390 (2009).

    Article  CAS  Google Scholar 

  2. Giljohann, D. A. et al. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49, 3280–3294 (2010).

    Article  CAS  Google Scholar 

  3. Gao, J., Gu, H. & Xu, B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009).

    Article  CAS  Google Scholar 

  4. Smith, A. M., Duan, H., Mohs, A. M. & Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226–1240 (2008).

    Article  CAS  Google Scholar 

  5. Jiang, W., Kim, B. Y. S., Rutka, J. T. & Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotech. 3, 145–150 (2008).

    Article  CAS  Google Scholar 

  6. Albanese, A., Tang, P. S. & Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

    Article  CAS  Google Scholar 

  7. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nature Rev. Drug Discov. 9, 615–627 (2010).

    Article  CAS  Google Scholar 

  8. Davis, M. E., Chen, Z. & Shin, D. M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Rev. Drug Discov. 7, 771–782 (2008).

    Article  CAS  Google Scholar 

  9. Perrault, S. D., Walkey, C., Jennings, T., Fischer, H. C. & Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9, 1909–1915 (2009).

    Article  CAS  Google Scholar 

  10. Robinson, J. T. et al. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am. Chem. Soc. 134, 10664–10669 (2012).

    Article  CAS  Google Scholar 

  11. Park, J. H. et al. Cooperative nanomaterial system to sensitize, target, and treat tumors. Proc. Natl Acad. Sci. USA 107, 981–986 (2010).

    Article  CAS  Google Scholar 

  12. Choi, H. S. et al. Renal clearance of quantum dots. Nature Biotechnol. 25, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  13. Zhou, C., Long, M., Qin, Y., Sun, X. & Zheng, J. Luminescent gold nanoparticles with efficient renal clearance. Angew. Chem. Int. Ed. 50, 3168–3172 (2011).

    Article  CAS  Google Scholar 

  14. Ballou, B. et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug. Chem. 18, 389–396 (2007).

    Article  CAS  Google Scholar 

  15. Albanese, A. & Chan, W. C. W. Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5, 5478–5489 (2011).

    Article  CAS  Google Scholar 

  16. Díaz, B. et al. Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small 4, 2025–2034 (2008).

    Article  Google Scholar 

  17. Lovrić, J., Cho, S. J., Winnik, F. M. & Maysinger, D. Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem. Biol. 12, 1227–1234 (2005).

    Article  Google Scholar 

  18. Derfus, A. M., Chan, W. C. W. & Bhatia, S. N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).

    Article  CAS  Google Scholar 

  19. Yang, R. S. H. et al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115, 1339–1343 (2007).

    Article  CAS  Google Scholar 

  20. Kim, J. S. et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol. Sci. 89, 338–347 (2006).

    Article  CAS  Google Scholar 

  21. Ye, L. et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nature Nanotech. 7, 453–458 (2012).

    Article  CAS  Google Scholar 

  22. Choi, H. S. et al. Design considerations for tumour-targeted nanoparticles. Nature Nanotech. 5, 42–47 (2010).

    Article  CAS  Google Scholar 

  23. Yoon, J., Lim, J. & Yoon, S. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies. ACS Nano 6, 7199–7208 (2012).

    Article  CAS  Google Scholar 

  24. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 9286–9287 (2006).

    Article  CAS  Google Scholar 

  25. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    Article  CAS  Google Scholar 

  26. Chaires, J., Herrera, J. & Waring, M. Preferential binding of daunomycin to 5′TACG and 5′TAGC sequences revealed by footprinting titration experiments. Biochemistry 29, 6145–6153 (1990).

    Article  CAS  Google Scholar 

  27. Owens, D. E. & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006).

    Article  CAS  Google Scholar 

  28. Khlebtsov, N. & Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40, 1647–1671 (2011).

    Article  CAS  Google Scholar 

  29. Clift, M. J. D. et al. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 232, 418–427 (2008).

    Article  CAS  Google Scholar 

  30. He, C., Hu, Y., Yin, L., Tang, C. & Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31, 3657–3666 (2010).

    Article  CAS  Google Scholar 

  31. Patel, P. C. et al. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug. Chem. 21, 2250–2256 (2010).

    Article  CAS  Google Scholar 

  32. Claus, V. et al. Lysosomal enzyme trafficking between phagosomes, endosomes, and lysosomes in J774 macrophages. Enrichment of cathepsin H in early endosomes. J. Biol. Chem. 273, 9842–9851 (1998).

    Article  CAS  Google Scholar 

  33. Odaka, C. & Mizuochi, T. Role of macrophage lysosomal enzymes in the degradation of nucleosomes of apoptotic cells. J. Immunol. 163, 5346–5352 (1999).

    CAS  Google Scholar 

  34. Chou, L. Y. T. & Chan, W. C. W. Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models. Adv. Healthcare Mater. 1, 714–721 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Canadian Institute of Health Research (MOP-93532, COP-126588, RMF-111623), the Natural Sciences and Engineering Research Council (NSERC, RGPIN-288231), the Collaborative Health Research Program (CPG-104290, CHRPJ385829), the Canadian Foundation for Innovation and the Ontario Ministry of Research and Innovation. L.Y.T.C. thanks the Canadian Breast Cancer Foundation for a fellowship, and L.Y.T.C. and K.Z. acknowledge NSERC for a fellowship. The authors thank C. Lo and Q. Dai for assistance with animal blood collection, the Advanced Bioimaging Centre at Mt Sinai Hospital, Toronto, Canada, for the use of the TEM, and the ANALEST facility in the Department of Chemistry, University of Toronto, for the use of ICP-AES.

Author information

Authors and Affiliations

Authors

Contributions

W.C.W.C., L.Y.T.C. and K.Z. conceived the idea. W.C.W.C and L.Y.T.C. wrote the paper. L.Y.T.C. and K.Z. performed experiments. All authors analysed data.

Corresponding author

Correspondence to Warren C. W. Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 9056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, L., Zagorovsky, K. & Chan, W. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nature Nanotech 9, 148–155 (2014). https://doi.org/10.1038/nnano.2013.309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.309

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research