Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impact of local compressive stress on the optical transitions of single organic dye molecules

Abstract

The ability to mechanically control the optical properties of individual molecules is a grand challenge in nanoscience and could enable the manipulation of chemical reactivity at the single-molecule level. In the past, light has been used to alter the emission wavelength of individual molecules1 or modulate the energy transfer quantum yield between them2. Furthermore, tensile stress has been applied to study the force dependence of protein folding/unfolding3,4,5 and of the chemistry and photochemistry of single molecules6,7,8,9, although in these mechanical experiments the strength of the weakest bond limits the amount of applicable force. Here, we show that compressive stress modifies the photophysical properties of individual dye molecules. We use an atomic force microscope tip to prod individual molecules adsorbed on a surface and follow the effect of the applied force on the electronic states of the molecule by fluorescence spectroscopy. Applying a localized compressive force on an isolated molecule induces a stress that is redistributed throughout the structure. Accordingly, we observe reversible spectral shifts and even shifts that persist after retracting the microscope tip, which we attribute to transitions to metastable states. Using quantum-mechanical calculations, we show that these photophysical changes can be associated with transitions among the different possible conformers of the adsorbed molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simultaneous AFM and CFM experiment.
Figure 2: Structure and optical spectra of TDI–4PDI.
Figure 3: Force–distance experiments on single TDI–4PDI molecules.
Figure 4: Force-induced transitions into metastable states.
Figure 5: Force–spectral shift correlation function Ct).

Similar content being viewed by others

References

  1. Kulzer, F., Kummer, S., Matzke, R., Bräuchle, C. & Basché, T. Single-molecule optical switching of terrylene in p-terphenyl. Nature 387, 688–691 (1997).

    Article  CAS  Google Scholar 

  2. Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. A digital fluorescent molecular photoswitch. Nature 420, 759–760 (2002).

    Article  CAS  Google Scholar 

  3. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  4. Lee, G. et al. Nanospring behaviour of ankyrin repeats. Nature 440, 246–249 (2006).

    Article  CAS  Google Scholar 

  5. Clausen-Schaumann, H., Seitz, M., Krautbauer, R. & Gaub, H. E. Force spectroscopy with single bio-molecules. Curr. Opin. Chem. Biol. 4, 524–530 (2000).

    Article  CAS  Google Scholar 

  6. Lenhardt, J. M. et al. Trapping a diradical transition state by mechanochemical polymer extension. Science 329, 1057–1060 (2010).

    Article  CAS  Google Scholar 

  7. Akbulatov, S., Tian, Y. & Boulatov, R. Force–reactivity property of a single monomer is sufficient to predict the micromechanical behavior of its polymer. J. Am. Chem. Soc. 134, 7620–7623 (2012).

    Article  CAS  Google Scholar 

  8. Liang, J. & Fernández, J. M. Mechanochemistry: one bond at a time. ACS Nano 3, 1628–1645 (2009).

    Article  CAS  Google Scholar 

  9. Hugel, T. et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    Article  Google Scholar 

  10. Sarkar, A., Robertson, R. B. & Fernandez, J. M. Simultaneous atomic force microscope and fluorescence measurements of protein unfolding using a calibrated evanescent wave. Proc. Natl Acad. Sci. USA 101, 12882–12886 (2004).

    Article  CAS  Google Scholar 

  11. Gaiduk, A. et al. Fluorescence detection with high time resolution: from optical microscopy to simultaneous force and fluorescence spectroscopy. Microsc. Res. Tech. 70, 433–441 (2007).

    Article  CAS  Google Scholar 

  12. Kodama, T., Ohtani, H., Arakawa, H. & Ikai, A. Mechanical perturbation-induced fluorescence change of green fluorescent protein. Appl. Phys. Lett. 86, 043901 (2005).

    Article  Google Scholar 

  13. Kellermayer, M. S. Z. et al. Spatially and temporally synchronized atomic force and total internal reflection fluorescence microscopy for imaging and manipulating cells and biomolecules. Biophys. J. 91, 2665–2677 (2006).

    Article  CAS  Google Scholar 

  14. Gumpp, H. et al. Triggering enzymatic activity with force. Nano Lett. 9, 3290–3295 (2009).

    Article  CAS  Google Scholar 

  15. He, Y., Lu, M., Cao, J. & Lu, H. P. Manipulating protein conformations by single-molecule AFM–FRET nanoscopy. ACS Nano 6, 1221–1229 (2012).

    Article  CAS  Google Scholar 

  16. Schweitzer, G. et al. Intramolecular directional energy transfer processes in dendrimers containing perylene and terrylene chromophores. J. Phys. Chem. A 107, 3199–3207 (2003).

    Article  CAS  Google Scholar 

  17. Hofkens, J. et al. Conformational rearrangements in and twisting of a single molecule. Chem. Phys. Lett. 333, 255–263 (2001).

    Article  CAS  Google Scholar 

  18. Kowerko, D., Schuster, J. & von Borczyskowski, C. Restricted conformation dynamics of single functionalized perylene bisimide molecules on SiO2 surfaces and in thin polymer films. Mol. Phys. 107, 1911–1921 (2009).

    Article  CAS  Google Scholar 

  19. Butt, H. J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005).

    Article  CAS  Google Scholar 

  20. Ebenstein, Y., Yoskovitz, E., Costi, R., Aharoni, A. & Banin, U. Interaction of scanning probes with semiconductor nanocrystals; physical mechanism and basis for near-field optical imaging. J. Phys. Chem. A 110, 8297–8303 (2006).

    Article  CAS  Google Scholar 

  21. Röhrig, U. F., Troppmann, U. & Frank, I. Organic chromophores under tensile stress. Chem. Phys. 289, 381–388 (2003).

    Article  Google Scholar 

  22. Marawske, S. et al. Fluorophores as optical sensors for local forces. ChemPhysChem 10, 2041–2048 (2009).

    Article  CAS  Google Scholar 

  23. Kobayashi, H., Hirata, S. & Vacha, M. Mechanical manipulation of photophysical properties of single conjugated polymer nanoparticles. J. Phys. Chem. Lett. 4, 2591–2596 (2013).

    Article  CAS  Google Scholar 

  24. Baer, B. J. & Chronister, E. L. Inhomogeneous spectral broadening in pentacene doped para-terphenyl crystals at high pressure and low temperature. Chem. Phys. 185, 385–391 (1994).

    Article  CAS  Google Scholar 

  25. Müller, A., Richter, W. & Kador, L. Pressure effects on single molecules of terrylene in p-terphenyl. Chem. Phys. Lett. 241, 547–554 (1995).

    Article  Google Scholar 

  26. Iwamoto, T., Kurita, A. & Kushida, T. Pressure effects on single-molecule spectra of terrylene in hexadecane. Chem. Phys. Lett. 284, 147–152 (1998).

    Article  CAS  Google Scholar 

  27. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009).

    Article  CAS  Google Scholar 

  28. Brantley, J. N., Wiggins, K. M. & Bielawski, C. W. Unclicking the click: mechanically facilitated 1,3-dipolar cycloreversions. Science 333, 1606–1609 (2011).

    Article  CAS  Google Scholar 

  29. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  30. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Article  Google Scholar 

  31. Becke, A. D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98, 1372–1377 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.S. acknowledges support from the Deutsche Forschungsgemeinschaft (IRTG 1404).

Author information

Authors and Affiliations

Authors

Contributions

S.S. performed the experiments and analysed the data. G.H. and T.B. designed and supervised the research. Synthesis and chemical analysis of TDI–4PDI were performed by I.O. and K.M. DFT calculations were performed by G.D. The experimental set-up was built by G.H. The manuscript was written by G.H., S.S. and T.B.

Corresponding authors

Correspondence to Gerald Hinze or Thomas Basché.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1133 kb)

Supplementary movie

Supplementary movie (MOV 4188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöttinger, S., Hinze, G., Diezemann, G. et al. Impact of local compressive stress on the optical transitions of single organic dye molecules. Nature Nanotech 9, 182–186 (2014). https://doi.org/10.1038/nnano.2013.303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing