Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

Abstract

Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin — a dynamic complex of nucleic acids and proteins — is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of epigenetic layers and corresponding size scales.
Figure 2: Micro- and nanodevices for mapping DNA covalent modifications.
Figure 3: Micro- and nanodevices for mapping histone modifications and nucleosome arrays.
Figure 4: Micro- and nanodevices for understanding chromatin dynamics and chromosome organization.
Figure 5: Possible hybrid micro- and nanodevice architecture to carry out multiplexed epigenomic measurements from a single cell.

Similar content being viewed by others

References

  1. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  Google Scholar 

  2. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nature Biotechnol. 28, 1057–1068 (2010).

    Article  CAS  Google Scholar 

  3. Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  4. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    Article  CAS  Google Scholar 

  5. Schones, D. & Zhao, K. Genome-wide approaches to studying chromatin modifications. Nature Rev. Genet. 9, 179–191 (2008).

    Article  CAS  Google Scholar 

  6. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    Article  CAS  Google Scholar 

  7. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Rev. Genet. 11, 204–220 (2010).

    Article  CAS  Google Scholar 

  8. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  9. Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    Article  CAS  Google Scholar 

  10. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  Google Scholar 

  11. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  Google Scholar 

  12. Bednar, J. et al. Nucleosomes, linker DNA and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc. Natl Acad. Sci. USA 95, 14173–14178 (1998).

    Article  CAS  Google Scholar 

  13. Mohammad, H. P. & Baylin, S. B. Linking cell signaling and the epigenetic machinery. Nature Biotechnol. 28, 1033–1038 (2010).

    Article  CAS  Google Scholar 

  14. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genet. 38, 1348–1354 (2006).

    Article  CAS  Google Scholar 

  15. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature Genet. 38, 1341–1347 (2006).

    Article  CAS  Google Scholar 

  16. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nature Rev. Genet. 14, 204–220 (2013).

    Article  CAS  Google Scholar 

  17. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  18. Zhu, J. et al. Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152, 642–654 (2013).

    Article  CAS  Google Scholar 

  19. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  Google Scholar 

  20. Fang, F. et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci. Transl. Med. 3, 75ra25 (2011).

    Article  Google Scholar 

  21. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers. Nature Rev. Cancer 10, 457–469 (2010).

    Article  CAS  Google Scholar 

  22. Fraga, M. F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genet. 37, 391–400 (2005).

    Article  CAS  Google Scholar 

  23. Fudenberg, G., Getz, G., Meyerson, M. & Mirny, L. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nature Biotechnol. 29, 1109–1113 (2011).

    Article  CAS  Google Scholar 

  24. Gu, H. et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nature Methods 7, 133–136 (2010).

    Article  CAS  Google Scholar 

  25. Park, P. J. ChIP-Seq: advantages and challenges of a maturing technology. Nature Rev. Genet. 10, 669–680 (2009).

    Article  CAS  Google Scholar 

  26. Krueger, F., Kreck, B., Franke, A. & Andrews, S. R. DNA methylome analysis using short bisulfite sequencing data. Nature Methods 9, 145–151 (2012).

    Article  CAS  Google Scholar 

  27. Laird, P. W. Principles and challenges of genome-wide DNA methylation analysis. Nature Rev. Genet. 11, 191–203 (2010).

    Article  CAS  Google Scholar 

  28. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  Google Scholar 

  29. Pujadas, E. & Feinberg, A. P. Regulated noise in the epigenetic landscape of development and disease. Cell 148, 1123–1131 (2012).

    Article  CAS  Google Scholar 

  30. Goren, A. et al. Chromatin profiling by directly sequencing small quantities of immunoprecipitated DNA. Nature Methods 7, 47–49 (2010).

    Article  CAS  Google Scholar 

  31. Stott, S. L. et al. Isolation and characterization of circulating tumor cells from patients with localized metastatic prostate cancer. Sci. Transl. Med. 2, 25ra23 (2010).

    Article  CAS  Google Scholar 

  32. Fanelli, M. et al. Pathology tissue-chromatin immunoprecipitation, coupled with high-throughput sequencing, allows the epigenetic profiling of patient samples. Proc. Natl Acad. Sci. USA 107, 21535–21540 (2010).

    Article  CAS  Google Scholar 

  33. Quake, S. R. & Scherer, A. From micro- to nanofabrication with soft materials. Science 290, 1536–1540 (2000).

    Article  CAS  Google Scholar 

  34. Qin, D., Xia, Y. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nature Protoc. 5, 491–502 (2010). This article illustrates different techniques for fabricating various kinds of micro- and nanoscale device that can be used for evaluating different kinds of epigenetic modification.

    Article  CAS  Google Scholar 

  35. Craighead, H. Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442, 387–393 (2006).

    Article  CAS  Google Scholar 

  36. Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nature Biotechnol. 31, 142–147 (2013).

    Article  CAS  Google Scholar 

  37. Robertson, K. D. DNA methylation and human disease. Nature Rev. Genet. 6, 597–610 (2005).

    Article  CAS  Google Scholar 

  38. Levene, M. J. et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299, 682–686 (2003).

    Article  CAS  Google Scholar 

  39. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  Google Scholar 

  40. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature Methods 7, 461–465 (2010). This article describes direct detection of DNA methylation, without bisulphite conversion, by monitoring a single- molecule sequencing reaction within a nanophotonic waveguide.

    Article  CAS  Google Scholar 

  41. Song, C. X. et al. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nature Methods 9, 75–77 (2012).

    Article  CAS  Google Scholar 

  42. Fang, G. et al. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nature Biotechnol. 30, 1232–1239 (2012).

    Article  CAS  Google Scholar 

  43. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  Google Scholar 

  44. Ratel, D., Ravanat, J. L., Berger, F. & Wion, D. N6-methyladenine: the other methylated base of DNA. Bioessays 28, 309–315 (2006).

    Article  CAS  Google Scholar 

  45. Austin, R. H., Brody, J. P., Cox, E. C., Duke, T. & Volkmuth, W. Stretch genes. Phys. Today 50, 32–38 (February, 1997).

    Article  CAS  Google Scholar 

  46. Bensimon, A. et al. Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096–2098 (1994).

    Article  CAS  Google Scholar 

  47. Cerf, A., Alava, T., Barton, R. A. & Craighead, H. G. Transfer-printing of single DNA molecule arrays on graphene for high-resolution electron imaging and analysis. Nano Lett. 11, 4232–4238 (2011).

    Article  CAS  Google Scholar 

  48. Streng, D. E., Lim, S. F., Pan, J., Karpusenka, A. & Riehn, R. Stretching chromatin through confinement. Lab Chip 9, 2772–2774 (2009).

    Article  CAS  Google Scholar 

  49. Tegenfeldt, J. O. et al. The dynamics of genomic-length DNA molecules in 100-nm channels. Proc. Natl Acad. Sci. USA 101, 10979–10983 (2004).

    Article  CAS  Google Scholar 

  50. Lim, S. F. et al. DNA methylation profiling in nanochannels. Biomicrofluidics 5, 034106 (2011).

    Article  CAS  Google Scholar 

  51. Cerf, A., Cipriany, B. R., Benitez, J. J. & Craighead, H. G. Single DNA molecule patterning for high-throughput epigenetic mapping. Anal. Chem. 83, 8073–8077 (2011). This article reports a technique to pattern and optically map large-scale arrays of single molecules in an extended form to detect and map DNA cytosine methylation.

    Article  CAS  Google Scholar 

  52. Wang, Y., Reinhart, W. F., Tree, D. R. & Dorfman, K. D. Resolution limit for DNA barcodes in the Odijk regime. Biomicrofluidics 6, 014101 (2012).

    Article  CAS  Google Scholar 

  53. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476 (2008).

    Article  CAS  Google Scholar 

  54. Wallace, E. V. B. et al. Identification of epigenetic DNA modifications with a protein nanopore. Chem. Commun. 46, 8195–8197 (2010).

    Article  CAS  Google Scholar 

  55. Mirsaidov, U. et al. Nanoelectromechanics of methylated DNA in a synthetic nanopore. Biophys. J. 96, L32–L34 (2009).

    Article  CAS  Google Scholar 

  56. Venkatesan, B. M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nature Nanotech. 6, 615–624 (2011).

    Article  CAS  Google Scholar 

  57. Wanunu, M. et al. Discrimination of methylcytosine from hydroxmethylcytosine in DNA molecules. J. Am. Chem. Soc. 133, 486–492 (2011). This article describes fabrication and testing of a solid-state nanopore device to differentiate several types of DNA covalent modifications in a label-free, rapid manner.

    Article  CAS  Google Scholar 

  58. Shim, J. et al. Detection and quantification of methylation in DNA using solid-state nanopores. Sci. Rep. 3, 1389 (2013).

    Article  CAS  Google Scholar 

  59. Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-angstrom precision. Nature Biotechnol. 30, 344–348 (2012).

    Article  CAS  Google Scholar 

  60. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nature Biotechnol. 30, 349–353 (2012).

    Article  CAS  Google Scholar 

  61. Branton, D. et al. The potential and challenges of nanopore sequencing. Nature Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  62. Goren, R. B. et al. High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein–DNA interactions and epigenomic states. Nature Protoc. 8, 539–554 (2013).

    Article  CAS  Google Scholar 

  63. Wu, A. R. et al. Automated microfluidic chromatin immunoprecipitation from 2,000 cells. Lab Chip 9, 1365–1370 (2009).

    Article  CAS  Google Scholar 

  64. Geng, T. et al. Histone modification analysis by chromatin immunoprecipitation from a low number of cells on a microfluidic platform. Lab Chip 11, 2842–2848 (2011).

    Article  CAS  Google Scholar 

  65. Thorsen, T., Maerkl, S. J. & Quake, S. R. Microfluidic large-scale integration. Science 298, 580–584 (2002).

    Article  CAS  Google Scholar 

  66. Tseng, Q., Lomonosov, A. M., Furlong, E. E. & Merten, C. A. Fragmentation of DNA in a sub-microliter microfluidic sonication device. Lab Chip 12, 4677–4682 (2012).

    Article  CAS  Google Scholar 

  67. Shui, L., Bomer, J. G., Jin, M., Carlen, E. T. & van den Berg, A. Microfluidic DNA fragmentation for on-chip genomic analysis. Nanotechnology 22, 494013 (2011).

    Article  CAS  Google Scholar 

  68. Wu, A. R. et al. High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation. Lab Chip 12, 2190–2198 (2012). This article describes construction of an automated microfluidic device to carry out ChIP from small cell numbers and with high reproducibility in a fast manner (hours).

    Article  CAS  Google Scholar 

  69. Cipriany, B. R. et al. Single molecule epigenetic analysis in a nanofluidic channel. Anal. Chem. 82, 2480–2487 (2010).

    Article  CAS  Google Scholar 

  70. Matsuoka, T. et al. Nanoscale squeezing in elastomeric nanochannels for single chromatin linearization. Nano Lett. 12, 6480–6484 (2012).

    Article  CAS  Google Scholar 

  71. Cerf, A., Tian, H. C. & Craighead, H. G. Ordered arrays of native chromatin molecules for high-resolution imaging and analysis. ACS Nano 6, 7928–7934 (2012).

    Article  CAS  Google Scholar 

  72. Fazio, T., Visnapuu, M. L., Wind, S. & Greene, E. C. DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. Langmuir 24, 10524–10531 (2008).

    Article  CAS  Google Scholar 

  73. Visnapuu, M. L. & Greene, E. C. Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nature Struct. Mol. Biol. 16, 1056–1062 (2009).

    Article  CAS  Google Scholar 

  74. Wang, Y. M. et al. Single-molecule studies of repressor-DNA interactions show long-range interactions. Proc. Natl Acad. Sci. USA 102, 9796–9801 (2005).

    Article  CAS  Google Scholar 

  75. Wang, Y. M., Tegenfeldt, J. O., Sturm, J. & Austin, R. H. Long-range interactions between transcription factors. Nanotechnology 16, 1993–1999 (2005).

    Article  CAS  Google Scholar 

  76. Murphy, P. M. et al. Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc. Natl Acad. Sci. USA 110, 7772–7777 (2013).

    Article  CAS  Google Scholar 

  77. Marie, R. et al. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device. Proc. Natl Acad. Sci. USA 110, 4893–4898 (2013).

    Article  CAS  Google Scholar 

  78. Cipriany, B. R. et al. Real-time analysis and selection of methylated DNA by fluorescence-activated single molecule sorting in a nanofluidic channel. Proc. Natl Acad. Sci. USA 109, 8477–8482 (2012). This article reports the fabrication of a nanofluidic device that can identify different kinds of epigenetic modification on single chromatin fragments and sort them into different compartments based on the bound modifications.

    Article  CAS  Google Scholar 

  79. Yamamoto, T. & Fujii, T. Nanofluidic single-molecule sorting of DNA: a new concept in separation and analysis of biomolecules towards ultimate level of performance. Nanotechnology 21, 395502 (2010).

    Article  CAS  Google Scholar 

  80. Soni, G. V. & Dekker, C. Detection of nucleosomal substructures using solid-state nanopores. Nano Lett. 12, 3180–3186 (2012).

    Article  CAS  Google Scholar 

  81. Kowalcyzk, S. W., Hall, A. R. & Dekker, C. Detection of local protein structures along DNA using solid-state nanopores. Nano Lett. 10, 324–328 (2010).

    Article  CAS  Google Scholar 

  82. Hornblower, B. et al. Single-molecule analysis of DNA–protein complexes using nanopores. Nature Methods 4, 315–317 (2007).

    Article  CAS  Google Scholar 

  83. Venkatesan, B. et al. Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA–protein complexes. ACS Nano 6, 441–450 (2012).

    Article  CAS  Google Scholar 

  84. Raillon, C. et al. Nanopore detection of single molecule RNAP–DNA transcription complex. Nano Lett. 12, 1157–1164 (2012).

    Article  CAS  Google Scholar 

  85. Struhl, K. & Segal, E. Determinants of nucleosome positioning. Nature Struct. Mol. Biol. 20, 267–273 (2013).

    Article  CAS  Google Scholar 

  86. Plesa, C. et al. Fast translocation of proteins through solid-state nanopores. Nano Lett. 13, 658–663 (2013).

    Article  CAS  Google Scholar 

  87. Garaj, S. et al. Graphene as a subnanometre trans-electrode. Nature 467, 190–193 (2010).

    Article  CAS  Google Scholar 

  88. Sen, Y. H., Jain, T., Aguilar, C. A. & Karnik, R. Enhanced discrimination of DNA molecules in nanofluidic channels through multiple measurements. Lab Chip 12, 1094–1101 (2012).

    Article  CAS  Google Scholar 

  89. Gershow, M. & Golovchenko, J. A. Recapturing and trapping single molecules with a solid-state nanopore. Nature Nanotech. 2, 775–779 (2007).

    Article  CAS  Google Scholar 

  90. Winters-Hilt, S. et al. Highly accurate classification of Watson–Crick basepairs on termini of single DNA molecules. Biophys. J. 84, 967–976 (2003).

    Article  CAS  Google Scholar 

  91. Raillon, C., Granjon, P., Graf, M., Steinbock, L. J. & Radenovic, A. Fast and automatic processing of multi-level events in nanopore translocation experiments. Nanoscale 4, 4916–4924 (2012).

    Article  CAS  Google Scholar 

  92. Pedone, D., Firnkes, M. & Rant, U. Data analysis of translocation events in nanopore experiments. Anal. Chem. 81, 9689–9694 (2009).

    Article  CAS  Google Scholar 

  93. Gomez, D., Shankman, L. S., Nguyen, A. T. & Owens, G. K. Detection of histone modifications at specific gene loci in single cells in histological sections. Nature Methods 10, 171–177 (2013).

    Article  CAS  Google Scholar 

  94. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods 5, 491–505 (2008).

    Article  CAS  Google Scholar 

  95. Killian, J. L., Li, M., Sheinin, M. Y. & Wang, M. D. Recent advances in single molecule studies of nucleosomes. Curr. Opin. Struct. Biol. 22, 80–87 (2012).

    Article  CAS  Google Scholar 

  96. Simon, M. et al. Histone fold modifications control nucleosome unwrapping and disassembly. Proc. Natl Acad. Sci. USA 108, 12711–12716 (2011).

    Article  CAS  Google Scholar 

  97. Cairns, B. R. Chromatin remodeling: insights and intrigue from single molecule studies. Nature Struct. Mol. Biol. 14, 989–996 (2007).

    Article  CAS  Google Scholar 

  98. Dulin, D., Lipfert, J., Moolman, C. & Dekker, N. Studying genomic processes at the single-molecule level: introducing the tools and applications. Nature Rev. Genet. 14, 9–22 (2013).

    Article  CAS  Google Scholar 

  99. Fazal, F. M. & Block, S. M. Optical tweezers study life under tension. Nature Photon. 5, 318–321 (2011).

    Article  CAS  Google Scholar 

  100. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl Acad. Sci. USA. 97, 127–132 (2000).

    Article  CAS  Google Scholar 

  101. Bennink, M. L. et al. Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nature Struct. Mol. Biol. 8, 606–610 (2001).

    Article  CAS  Google Scholar 

  102. Hall, M. A. et al. High resolution dynamic mapping of histone–DNA interactions in a nucleosome. Nature Struct. Mol. Biol. 16, 124–129 (2009). This article describes the use of optical tweezers to generate a comprehensive map of histone–DNA interactions on a single nucleosome and shows a new periodicity in contact strength with several broad regions of strong contact.

    Article  CAS  Google Scholar 

  103. Mihardja, S., Spakowitz, A. J., Zhang, Y. & Bustamante, C. Effect of force on mononucleosomal dynamics. Proc. Natl Acad. Sci. USA 103, 15871–15876 (2006).

    Article  CAS  Google Scholar 

  104. Jin, J. et al. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier. Nature Struct. Mol. Biol. 17, 745–752 (2010).

    Article  CAS  Google Scholar 

  105. Shundrovsky, A., Smith, C. L., Lis, J. T., Peterson, C. L. & Wang, M. D. Probing SWI/SNF remodeling of the nucleosome by unzipping single DNA molecules. Nature Struct. Mol. Biol. 13, 549–554 (2006).

    Article  CAS  Google Scholar 

  106. Bintu, L. et al. Nucleosomal elements that control the topography of the barrier to transcription. Cell 151, 738–749 (2012).

    Article  CAS  Google Scholar 

  107. Kruithof, M. et al. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nature Struct. Mol. Biol. 16, 534–540 (2009). This article reports the use of magnetic tweezers to pull on a single heterochromatin fibre and determines that the molecule behaved in a similar way to a Hookian spring with low compliance, which indicates the DNA can be kept both highly compacted and accessible.

    Article  CAS  Google Scholar 

  108. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  Google Scholar 

  109. Das, C., Tyler, J. K. & Churchill, M. E. The histone shuffle: histone chaperones in an energetic dance. Trends Biochem. Sci. 35, 476–489 (2010).

    Article  CAS  Google Scholar 

  110. Vlijm, R., Smitshuijzen, J. S. J., Lusser, A. & Dekker, C. NAP1-assisted nucleosome assembly on DNA measured in real time by single-molecule magnetic tweezers. PLoS ONE 7, e46306 (2012).

    Article  CAS  Google Scholar 

  111. Hawkins, R. D., Hon, G. C. & Ren, B. Next-generation genomics: an integrative approach. Nature Rev. Genet. 11, 476–486 (2010). This article describes strategies to analyse, visualize, manipulate and interpret data for different types of genomics experiment in an integrated way.

    Article  CAS  Google Scholar 

  112. Lenshof, A. & Laurell, T. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39, 1203–1217 (2010).

    Article  CAS  Google Scholar 

  113. Rasmussen, K. H. et al. A device for extraction, manipulation and stretching of DNA from single human chromosomes. Lab Chip 11, 1431–1433 (2011).

    Article  CAS  Google Scholar 

  114. Fan, H. C., Wang, J., Potanina, A. & Quake, S. R. Whole-genome molecular haplotyping of single cells. Nature Biotechnol. 29, 51–57 (2011). This article describes a microfluidic device capable of trapping a single cell and isolating each chromosome in a small chamber for haplotyping.

    Article  CAS  Google Scholar 

  115. Benitez, J. J. et al. Microfluidic extraction, stretching and analysis of human chromosomal DNA from single cells. Lab Chip 12, 4848–4854 (2012).

    Article  CAS  Google Scholar 

  116. Pelletier, J. et al. Physical manipulation of the Escherichia coli chromosome reveals its soft nature. Proc. Natl Acad. Sci. USA 109, E2649–E2656 (2012).

    Article  CAS  Google Scholar 

  117. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  118. Ramakrishna, R. K. et al. Relationship between nucleosome positioning and DNA methylation. Nature 466, 388–392 (2010).

    Article  CAS  Google Scholar 

  119. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modifications: patterns and paradigms. Nature Rev. Genet. 10, 295–304 (2009).

    Article  CAS  Google Scholar 

  120. Brinkman, A. B. et al. Sequential ChIP–bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA-methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    Article  CAS  Google Scholar 

  121. Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1–15 (2013).

    Article  CAS  Google Scholar 

  122. Haynes, K. A. & Silver, P. A. Synthetic reversal of epigenetic silencing. J. Biol. Chem. 286, 27176–27182 (2011).

    Article  CAS  Google Scholar 

  123. Hamon, M. A. & Cossart, P. Histone modifications and chromatin remodeling during bacterial infections. Cell Host Microbe 4, 100–109 (2008).

    Article  CAS  Google Scholar 

  124. Maunakea, A. K., Chepelev, I. & Zhao, K. Epigenome mapping in normal and disease states. Circ. Res. 107, 327–339 (2010).

    Article  CAS  Google Scholar 

  125. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nature Rev. Genet. 8, 253–262 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Karnik, J. Harper, C. Gifford and A. Meissner for discussions, and N. Taylor for assistance with artwork. H.G.C. acknowledges support from the National Institutes of Health grants R01 HG006850-01, U54 CA143876-03 and R01 DA030329-03. C.A.A. acknowledges support from and sponsorship by the Department of the Air Force under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the US government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos A. Aguilar or Harold G. Craighead.

Ethics declarations

Competing interests

H.G.C. is a co-founder of Pacific Biosciences and Odyssey Scientific.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, C., Craighead, H. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics. Nature Nanotech 8, 709–718 (2013). https://doi.org/10.1038/nnano.2013.195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.195

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research