Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Silicon chips detect intracellular pressure changes in living cells

Subjects

Abstract

The ability to measure pressure changes inside different components of a living cell is important, because it offers an alternative way to study fundamental processes that involve cell deformation1. Most current techniques such as pipette aspiration2, optical interferometry3 or external pressure probes4 use either indirect measurement methods or approaches that can damage the cell membrane. Here we show that a silicon chip small enough to be internalized into a living cell can be used to detect pressure changes inside the cell. The chip, which consists of two membranes separated by a vacuum gap to form a Fabry–Pérot resonator, detects pressure changes that can be quantified from the intensity of the reflected light. Using this chip, we show that extracellular hydrostatic pressure is transmitted into HeLa cells and that these cells can endure hypo-osmotic stress without significantly increasing their intracellular hydrostatic pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and sensing principle of the chip.
Figure 2: Validation of the sensing principle.
Figure 3: Silicon chips inside human cells.
Figure 4: Detection of pressure changes inside cells.

Similar content being viewed by others

References

  1. Stewart, M. P. et al. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

    Article  CAS  Google Scholar 

  2. Rand, R. P. & Burton, A. C. Mechanical properties of red cell membrane. i. Membrane stiffness+intracellular pressure. Biophys. J. 4, 115–135 (1964).

    Article  CAS  Google Scholar 

  3. Strohmeier, R. & Bereiterhahn, J. Hydrostatic-pressure in epidermal-cells is dependent on Ca-mediated contractions. J. Cell Sci. 88, 631–640 (1987).

    Google Scholar 

  4. Kelly, S. M. & Macklem, P. T. Direct measurement of intracellular pressure. Am. J. Physiol. 260, C652–C657 (1991).

    Article  CAS  Google Scholar 

  5. Whitesides, G. M. The ‘right’ size in nanobiotechnology. Nature Biotechnol. 21, 1161–1165 (2003).

    Article  CAS  Google Scholar 

  6. Singhal, R. et al. Multifunctional carbon-nanotube cellular endoscopes. Nature Nanotech. 6, 57–63 (2011).

    Article  CAS  Google Scholar 

  7. Tian, B. Z. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    Article  CAS  Google Scholar 

  8. Arlett, J. L., Myers, E. B. & Roukes, M. L. Comparative advantages of mechanical biosensors. Nature Nanotech. 6, 203–215 (2011).

    Article  CAS  Google Scholar 

  9. Cross, S. E., Jin, Y. S., Rao, J. & Gimzewski, J. K. Nanomechanical analysis of cells from cancer patients. Nature Nanotech. 2, 780–783 (2007).

    Article  CAS  Google Scholar 

  10. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001).

    Article  CAS  Google Scholar 

  11. Vaziri, A. & Gopinath, A. Cell and biomolecular mechanics in silico. Nature Mater. 7, 15–23 (2008).

    Article  CAS  Google Scholar 

  12. Fan, J. Y. & Chu, P. K. Group IV nanoparticles: synthesis, properties, and biological applications. Small 6, 2080–2098 (2010).

    Article  CAS  Google Scholar 

  13. Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotech. 3, 151–157 (2008).

    Article  CAS  Google Scholar 

  14. Fernandez-Rosas, E. et al. Intracellular polysilicon barcodes for cell tracking. Small 5, 2433–2439 (2009).

    Article  CAS  Google Scholar 

  15. Novo, S. et al. A novel embryo identification system by direct tagging of mouse embryos using silicon-based barcodes. Human Reprod. 26, 96–105 (2011).

    Article  Google Scholar 

  16. Gomez-Martinez, R. et al. Intracellular silicon chips in living cells. Small 6, 499–502 (2010).

    Article  CAS  Google Scholar 

  17. Born, M. & Wolf, E. Principles of Optics 6th edn (Pergamon, 1980).

    Google Scholar 

  18. French, P. J. Polysilicon: a versatile material for microsystems. Sens. Actuat. A 99, 3–12 (2002).

    Article  CAS  Google Scholar 

  19. Myers, K. A., Rattner, J. B., Shrive, N. G. & Hart, D. A. Hydrostatic pressure sensation in cells: integration into the tensegrity model. Biochem. Cell Biol. 85, 543–551 (2007).

    Article  CAS  Google Scholar 

  20. Ingber, D. E. & Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157–1173 (2003).

    Article  CAS  Google Scholar 

  21. Borgnia, M., Nielsen, S., Engle, A. & Agre, P. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 68, 425–458 (1999).

    Article  CAS  Google Scholar 

  22. Spagnoli, C., Beyder, A., Besch, S. & Sachs, F. Atomic force microscopy analysis of cell volume regulation. Phys. Rev. E 78, 031916 (2008).

    Article  Google Scholar 

  23. Finan, J. D. & Guilak, F. The effects of osmotic stress on the structure and function of the cell nucleus. J. Cell Biochem. 109, 460–467 (2010).

    CAS  Google Scholar 

  24. Pietuch, A, Brückner, B. R. & Janshoff, A. Membrane tension homeostasis of epithelial cells through surface area regulation in response to osmotic stress. Biochim. Biophys. Acta Mol. Cell Res. 1833, 712–722 (2013).

    Article  CAS  Google Scholar 

  25. Tambe, D. T. et al. Collective cell guidance by cooperative intercellular forces. Nature Mater. 10, 469–475 (2011).

    Article  CAS  Google Scholar 

  26. Trepat, X. et al. Physical forces during collective cell migration. Nature Phys. 5, 426–430 (2009).

    Article  CAS  Google Scholar 

  27. DuFort, C. C., Paszek, M. J. & Weaver, V. M. Balancing forces: architectural control of mechanotransduction. Nature Rev. Mol. Cell Biol. 12, 308–318 (2011).

    Article  CAS  Google Scholar 

  28. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nature Rev. Mol. Cell Biol. 10, 63–73 (2009).

    Article  CAS  Google Scholar 

  29. Fritsch, A. et al. Are biomechanical changes necessary for tumour progression? Nature Phys. 6, 730–732 (2010).

    Article  CAS  Google Scholar 

  30. Wozniak, M. A. & Chen, C. S. Mechanotransduction in development: a growing role for contractility. Nature Rev. Mol. Cell Biol. 10, 34–43 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Government grants TEC2009-07687-E, TEC2011-29140-C03-01 and SAF2010-21879-C02-01. P.V. was supported by Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas–Instituto de Salud Carlos III (CIBERDEM-ISCIII). The authors thank M. Calvo of Centros Científicos y Tecnológicos–Universidad de Barcelona (CCiT-UB), M.T. Seisdedos (CIB), J. Monteagudo (Leica Microsystems S.L.) and D. Megias of Unidad de Microscopía Confocal-Centro Nacional de Investigaciones Oncológicas (CMU-CNIO) for their assistance with CLSM experiments and A. Bosch (CCiT-UB) for assistance with image processing. The authors also thank the cleanroom staff of IMB-CNM for fabrication of the chips.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and contributed to writing the manuscript. M.D., R.G-M. and J.E. conceived and guided chip fabrication. Optical design and analysis was carried out by K.Z. The biological experiments were performed by A.M.H.P. and P.V., designed by A.M.H.P. and E.J.d.l.R., and planned and coordinated by T.S. R.G-M. performed the experimental characterization of the chips as well as data analysis. J.A.P. conceived and directed the project.

Corresponding author

Correspondence to José A. Plaza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3994 kb)

Supplementary movie S1

Supplementary movie S1 (AVI 236 kb)

Supplementary movie S2

Supplementary movie S2 (AVI 205 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Martínez, R., Hernández-Pinto, A., Duch, M. et al. Silicon chips detect intracellular pressure changes in living cells. Nature Nanotech 8, 517–521 (2013). https://doi.org/10.1038/nnano.2013.118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing