Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Readout and control of a single nuclear spin with a metastable electron spin ancilla

Abstract

Electron and nuclear spins associated with point defects in insulators are promising systems for solid-state quantum technology1,2,3. The electron spin is usually used for readout and addressing, and nuclear spins are used as exquisite quantum bits4,5 and memory systems3,6. With these systems, single-shot readout of single nuclear spins5,7 as well as entanglement4,8,9, aided by the electron spin, have been shown. Although the electron spin in this example is essential for readout, it usually limits the nuclear spin coherence10, leading to a quest for defects with spin-free ground states9,11. Here, we isolate a hitherto unidentified defect in diamond and use it at room temperature to demonstrate optical spin polarization and readout with exceptionally high contrast (up to 45%), coherent manipulation of an individual excited triplet state spin, and coherent nuclear spin manipulation using the triplet electron spin as a metastable ancilla. We demonstrate nuclear magnetic resonance and Rabi oscillations of the uncoupled nuclear spin in the spin-free electronic ground state. Our study demonstrates that nuclei coupled to single metastable electron spins are useful quantum systems with long memory times, in spite of electronic relaxation processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical properties of the ST1 defect.
Figure 2: Optically detected electron spin resonance.
Figure 3: Kinetics of the shelving state and energy-level scheme at zero magnetic field.
Figure 4: Coherent triplet spin manipulation.
Figure 5: Readout and control of a single nuclear spin in the spin-free electronic ground state.

Similar content being viewed by others

References

  1. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  CAS  Google Scholar 

  2. Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  CAS  Google Scholar 

  3. Morton, J. J. L. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008).

    Article  CAS  Google Scholar 

  4. Dutt, M. V. G. et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007).

    Article  Google Scholar 

  5. Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  CAS  Google Scholar 

  6. Steger, M. et al. Quantum information storage for over 180 s using donor spins in a 28Si ‘semiconductor vacuum'. Science 336, 1280–1283 (2012).

    Article  CAS  Google Scholar 

  7. Pla, J. J. et al. High-fidelity readout and control of a nuclear spin qubit in silicon. Nature 496, 334–338 (2013).

    Article  CAS  Google Scholar 

  8. Neumann, P. et al. Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008).

    Article  CAS  Google Scholar 

  9. Filidou, V. et al. Ultrafast entangling gates between nuclear spins using photoexcited triplet states. Nature Phys. 8, 1–5 (2012).

    Article  Google Scholar 

  10. Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  CAS  Google Scholar 

  11. Akhtar, W. et al. Coherent storage of photoexcited triplet states using 29Si nuclear spins in silicon. Phys. Rev. Lett. 108, 1–5 (2012).

    Article  Google Scholar 

  12. Brennecke, F., Ritter, S., Donner, T. & Esslinger, T. Cavity optomechanics with a Bose–Einstein condensate. Science 322, 235–238 (2008).

    Article  CAS  Google Scholar 

  13. Brown, K. R. et al. Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011).

    Article  CAS  Google Scholar 

  14. Zhu, X. et al. Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478, 221–224 (2011).

    Article  CAS  Google Scholar 

  15. Kubo, Y. et al. Strong coupling of a spin ensemble to a superconducting resonator. Phys. Rev. Lett. 105, 1–4 (2010).

    Article  Google Scholar 

  16. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    Article  CAS  Google Scholar 

  17. Epstein, R. J., Mendoza, F. M., Kato, Y. K. & Awschalom, D. D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Phys. 1, 94–98 (2005).

    Article  CAS  Google Scholar 

  18. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  CAS  Google Scholar 

  19. Zaitsev, A. M. Optical Properties of Diamond: A Data Handbook (Springer, 2001).

    Book  Google Scholar 

  20. Carrington, A. & McLachlan, A. D. Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics (Harper & Row, 1967).

    Google Scholar 

  21. Jacques, V. et al. Dynamic polarization of single nuclear spins by optical pumping of nitrogen-vacancy color centers in diamond at room temperature. Phys. Rev. Lett. 102, 7–10 (2009).

    Article  Google Scholar 

  22. Colpa, J. P. & Stehlik, D. Optical nuclear polarization as a consequence of the non-crossing rule (level-anti-crossing). Chem. Phys. 21, 273–288 (1977).

    Article  CAS  Google Scholar 

  23. Hoch, M. & Reynhardt, E. Nuclear spin-lattice relaxation of dilute spins in semiconducting diamond. Phys. Rev. B 37, 9222–9226 (1988).

    Article  CAS  Google Scholar 

  24. Burum, D., Linder, M. & Ernst, R. Low-power multipulse line narrowing in solid-state NMR. J. Magn. Reson. (1969) 44, 173–188 (1981).

    Article  CAS  Google Scholar 

  25. Bielecki, A., Kolbert, A. C. & Levitt, M. H. Frequency-switched pulse sequences: homonuclear decoupling and dilute spin NMR in solids. Chem. Phys. Lett. 155, 341–346 (1989).

    Article  CAS  Google Scholar 

  26. Rhim, W-K. Enhanced resolution for solid state NMR. J. Chem. Phys. 58, 1772 (1973).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the DFG (Forschergruppe 1493 and SFB/TR21) as well as the EU (ERC grant SQUTEC and FP7 grants DIAMANT and QINVC). B.H. acknowledges support from HQOC. The authors thank M. Sellars, P. Hemmer, P. Neumann, R. Kolesov, R. Stöhr and C. Burk for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.L., H.F. and J.W. designed the experiments. S.L., M.W., T.R., T.B., S.Y., M.E., P.S. and H.F. performed the experiments. S.L., M.W., M.D. and H.F. analysed the data. B.H. and M.L. fabricated the nanopillars. M.D., Z.B., A.G. and N.M. provided theoretical support. All authors discussed the data and commented on the manuscript. S.L., M.D., H.F. and J.W. wrote the paper.

Corresponding authors

Correspondence to Marcus W. Doherty or Helmut Fedder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 3757 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SY., Widmann, M., Rendler, T. et al. Readout and control of a single nuclear spin with a metastable electron spin ancilla. Nature Nanotech 8, 487–492 (2013). https://doi.org/10.1038/nnano.2013.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing