Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-orienting nanocubes for the assembly of plasmonic nanojunctions

Abstract

Plasmonic hot spots are formed when metal surfaces with high curvature are separated by nanoscale gaps and an electromagnetic field is localized within the gaps. These hot spots are responsible for phenomena such as subwavelength focusing1,2, surface-enhanced Raman spectroscopy3 and electromagnetic transparency4, and depend on the geometry of the nanojunctions between the metal surfaces5. Direct-write techniques such as electron-beam lithography can create complex nanostructures with impressive spatial control6 but struggle to fabricate gaps on the order of a few nanometres or manufacture arrays of nanojunctions in a scalable manner. Self-assembly methods, in contrast, can be carried out on a massively parallel scale using metal nanoparticle building blocks of specific shape7,8. Here, we show that polymer-grafted metal nanocubes can be self-assembled into arrays of one-dimensional strings that have well-defined interparticle orientations and tunable electromagnetic properties. The nanocubes are assembled within a polymer thin film and we observe unique superstructures derived from edge–edge or face–face interactions between the nanocubes. The assembly process is strongly dependent on parameters such as polymer chain length, rigidity or grafting density, and can be predicted by free energy calculations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-oriented nanocrystals for plasmonic materials.
Figure 2: Theoretically predicted interaction between silver nanocubes.
Figure 3: Chain-length-dependent orientation of nanocube junctions.
Figure 4: Plasmonic response of the oriented nanojunctions.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  2. Ghosh, S. K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007).

    Article  CAS  Google Scholar 

  3. Hyunhyub, K., Srikanth, S. & Vladimir, V. T. Nanostructured surfaces and assemblies as SERS media. Small 4, 1576–1599 (2008).

    Article  Google Scholar 

  4. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    Article  CAS  Google Scholar 

  5. Stebe, K. J., Lewandowski, E. & Ghosh, M. Oriented assembly of metamaterials. Science 325, 159–160 (2009).

    Article  CAS  Google Scholar 

  6. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  CAS  Google Scholar 

  7. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotech. 5, 15–25 (2009).

    Article  Google Scholar 

  8. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  9. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 9286–9287 (2006).

    Article  CAS  Google Scholar 

  10. Millstone, J. E. et al. DNA–gold triangular nanoprism conjugates. Small 4, 2176–2180 (2008).

    Article  CAS  Google Scholar 

  11. Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).

    Article  CAS  Google Scholar 

  12. Shenhar, R., Norsten, T. B. & Rotello, V. M. Polymer-mediated nanoparticle assembly: structural control and applications. Adv. Mater. 17, 657–669 (2005).

    Article  CAS  Google Scholar 

  13. Caswell, K. K., Wilson, J. N., Bunz, U. H. F. & Murphy, C. J. Preferential end-to-end assembly of gold nanorods by biotin–streptavidin connectors. J. Am. Chem. Soc. 125, 13914–13915 (2003).

    Article  CAS  Google Scholar 

  14. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    Article  CAS  Google Scholar 

  15. Nie, Z. et al. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nature Mater. 6, 609–614 (2007).

    Article  CAS  Google Scholar 

  16. Akcora, P. et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nature Mater. 8, 354–359 (2009).

    Article  CAS  Google Scholar 

  17. Maillard, D., Kumar, S. K., Rungta, A., Benicewicz, B. C. & Prud'homme, R. E. Polymer-grafted-nanoparticle surfactants. Nano Lett. 11, 4569–4573 (2011).

    Article  CAS  Google Scholar 

  18. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  19. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  20. Tao, A., Sinsermsuksakul, P. & Yang, P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 45, 4597–4601 (2006).

    Article  CAS  Google Scholar 

  21. Lee, S. Y. et al. Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano 4, 5763–5772 (2010).

    Article  CAS  Google Scholar 

  22. Bates, F. S. Polymer–polymer phase behavior. Science 251, 898–905 (1991).

    Article  CAS  Google Scholar 

  23. Pryamtisyn, V., Ganesan, V., Panagiotopoulos, A. Z., Liu, H. & Kumar, S. K. Modeling the anisotropic self-assembly of spherical polymer-grafted nanoparticles. J. Chem. Phys. 131, 221102 (2009).

    Article  Google Scholar 

  24. Li, L. et al. Kinetically trapped co-continuous polymer morphologies through intraphase gelation of nanoparticles. Nano Lett. 11, 1997–2003 (2011).

    Article  CAS  Google Scholar 

  25. Zhu, B., Eurell, T., Gunawan, R. & Leckband, D. Chain-length dependence of the protein and cell resistance of oligo(ethylene glycol)-terminated self-assembled monolayers on gold. J. Biomed. Mater. Res. 56, 406–416 (2001).

    Article  CAS  Google Scholar 

  26. Nie, Z. & Kumacheva, E. Patterning surfaces with functional polymers. Nature Mater. 7, 277–290 (2008).

    Article  CAS  Google Scholar 

  27. Kanté, B., de Lustrac, A., Lourtioz, J-M. & Gadot, F. Engineering resonances in infrared metamaterials. Opt. Express 16, 6774–6784 (2008).

    Article  Google Scholar 

  28. Agarwal, U. & Escobedo, F. A. Mesophase behaviour of polyhedral particles. Nature Mater. 10, 230–235 (2011).

    Article  CAS  Google Scholar 

  29. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    Article  CAS  Google Scholar 

  30. Xiao, S., Chettiar, U. K., Kildishev, A. V., Drachev, V. P. & Shalaev, V. M. Yellow-light negative-index metamaterials. Opt. Lett. 34, 3478–3480 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.R.T. acknowledges financial support from UCSD start-up funds, a NSF BRIGE grant (ECCS-1125789) and a Hellman Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

B.G. and A.R.T. conceived and designed the assembly experiments. B.G. performed the assembly experiments. G.A. designed and performed Monte Carlo calculations. A.R.T. performed finite element method simulations. G.A. and A.R.T. co-wrote the paper.

Corresponding author

Correspondence to Andrea R. Tao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, B., Arya, G. & Tao, A. Self-orienting nanocubes for the assembly of plasmonic nanojunctions. Nature Nanotech 7, 433–437 (2012). https://doi.org/10.1038/nnano.2012.83

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2012.83

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing